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For other information on FEAT and updated journal references, see the FEAT 
web page. If you use FEAT in your research, please quote the journal references 
listed there.  

FEAT is a software tool for high quality model-based FMRI data analysis, with 
an easy-to-use graphical user interface (GUI). FEAT is part of FSL (FMRIB's 
Software Library). FEAT automates as many of the analysis decisions as possible, 
and allows easy (though still robust, efficient and valid) analysis of simple 
experiments whilst giving enough flexibility to also allow sophisticated analysis of 
the most complex experiments.  

Analysis for a simple experiment can be set up in less than 1 minute, whilst a 
highly complex experiment need take no longer than 5 minutes to set up. The 
FEAT programs then typically take 10-30 minutes to run (per first-level session), 
producing a web page analysis report, including colour activation images and time-
course plots of data vs model.  

The data modelling which FEAT uses is based on general linear modelling 
(GLM), otherwise known as multiple regression. It allows you to describe the 
experimental design; then a model is created that should fit the data, telling you 
where the brain has activated in response to the stimuli. In FEAT, the GLM 
method used on first-level (time-series) data is known as FILM (FMRIB's 
Improved Linear Model). FILM uses a robust and accurate nonparametric 
estimation of time series autocorrelation to prewhiten each voxel's time series; this 
gives improved estimation efficiency compared with methods that do not pre-
whiten.  

FEAT saves many images to file - various filtered data, statistical output and 
colour rendered output images - into a separate FEAT directory for each session. If 
you want to re-run the final stages of analysis ("contrasts, thresholding and 
rendering"), you can do so without re-running any of the computationally intensive 
parts of FEAT, by telling FEAT to look in a FEAT directory for all of the raw 
statistical images which it needs to do this. The results of this re-run of the final 
stages either overwrite the old ones, or optionally are put in a new FEAT directory, 
named similarly to the original FEAT directory, but with an extra "+" included in 
the name.  

FEAT can also carry out the registration of the low resolution functional images 
to a high resolution scan, and registration of the high resolution scan to a standard 
(e.g. Talairached) image. Registration is carried out using FLIRT.  

For higher-level analysis (e.g. analysis across sessions or across subjects) FEAT 
uses FLAME (FMRIB's Local Analysis of Mixed Effects). FLAME uses very 
sophisticated methods for modelling and estimating the random-effects 
component of the measured inter-session mixed-effects variance, using MCMC 
sampling to get an accurate estimation of the true random-effects variance and 
degrees of freedom at each voxel.  

There is a brief overview of GLM analysis in Appendix A and an overview of 
how the design matrix is setup in FEAT in Appendix B.  
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Before calling the FEAT GUI, you need to prepare each session's data as a 4D 
Analyze format image (there are utilities in fsl/bin called avwmerge and avwsplit to 
convert between multiple 3D images and a single 4D - ie 3D+time - image). If the 
data requires any scanner-specific corrections (for example, for artefacts such as 
slice dropouts), this should be applied to the data before running FEAT.  

Structural images for use as "highres" images in registration should normally be 
brain-extracted using BET before being used by FEAT.  

 
������������
To call the FEAT GUI, either run Feat, or run fsl and press the FEAT button.  

Now set the filename of the 4D input image (e.g. 
/users/sibelius/origfunc.hdr) by pressing Select 4D data. You can setup 
FEAT to process many input images, one after another, as long as they all require 
exactly the same analysis. Each one will generate its own FEAT directory, the name 
of which is based on the input data's filename (unless you enter an Output 
directory name).  

Note that if you later run Post-stats or Registration, or if you are running 
Higher-level Analysis, then instead of selecting 4D data as the input, you select 
FEAT directories. In this case first set the top two drop-down menus in the GUI 
and then select the FEAT directory or directories; it is important to select the 
FEAT directories before setting up anything else in FEAT. This is because quite a 
lot of FEAT settings are loaded from the first selected FEAT directory, possibly 
over-writing any settings which you wish to change!  

If you are running FEAT from within MEDx and the number of File-based 
first-level analyses is set to 0 then FEAT will use the selected group page inside 
the current MEDx folder for analysis, instead of a file on disk.  

Total volumes (including volumes to be deleted) is automatically set from the 
input files chosen.  

Now set Delete volumes. These should be the volumes that are not wanted 
because steady-state imaging is not reached for typically two or three volumes. 
These volumes are deleted as soon as FEAT is started, so any 4D data output by 
FEAT will not contain the deleted volumes. Note that Delete volumes should not 
be used to correct for the time lag between stimulation and the measured response 
- this is corrected for in the design matrix by convolving the input stimulation 
waveform with a blurring-and-delaying haemodynamic response function. Most 

importantly, remember when setting up the design matrix that the timings in the 
design matrix start at t=0 seconds, and this corresponds to the start of the first 
image taken after the deleted scans. In other words, the design matrix starts after 
the deleted scans have been deleted.  

Set the TR (time from the start of one volume to the start of the next).  
Now set the High pass filter cutoff point (seconds), that is, the longest 

temporal period that you will allow. A sensible setting in the case of an ABAB or 
ABACABAC type block design is the (A+B) or (A+B+A+C) total cycle time. For 
event-related designs the rule is not so simple, but in general the cutoff can 
typically be reduced at least to 50s.  

Note that virtually every timing input in FEAT is set in seconds, not volumes. 
Total volumes and Delete volumes are exceptions.  

Now click on the Stats tab and setup the model and required contrasts (for more 
detail see below).  

When FEAT setup is complete and the Go button is pressed, the setup gets 
saved in a temporary FEAT setup file. Then a script (called feat - note the lower 
case) is run which uses the setup file and carries out all the FMRI analysis steps 
asked for, starting by creating a FEAT results directory, and copying the setup file 
into here, named design.fsf (this setup file can be later loaded back into FEAT 
using the Load button).  

Once the script has started running you can Exit the FEAT GUI (and even log 
out of your computer). The analysis will continue until completion, printing text 
information about its progress in the Featwatcher GUI.  
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First-level or Higher-level Analysis? 
Full Analysis or Partial Analysis? 
Misc 
Data 
Pre-Stats 
Stats (First-level) 
Contrasts, Thresholding, Rendering 
Registration 
Bottom Row of Buttons 
Time-Series Plots 
Group Statistics 
Introduction 
Choosing stats images to investigate 
Setting up a mask or voxel co-ordinates 
Advanced options 
Go 

 

��������������������������������� �
Use First-level analysis for analysing each session's data - i.e. the time-series 
analysis of the raw 4D FMRI data.  

Use Higher-level analysis for combining first-level analyses. You can use this 
hierarchically - for example at second-level to analyse across several sessions and 
then at third-level to analyse across several subjects.  

����������������!�������������� �
You can run a full analysis - Pre-Stats; Stats; Post-stats; Registration - or a (sensible) 
subset of these options.  

If you select Post-stats or Registration only, you will need to select a FEAT 
directory (or directories) instead of starting with 4D image data; the results already 
produced in those FEAT directories will then be used as appropriate.  

Note that if you want to run only Post-stats, you must select the FEAT 
directory/directories before editing the contrasts or thresholding parameters, as 
these will get reset on selection of the FEAT directory/directories.  

�����
Balloon help (the popup help messages in the FEAT GUI) can be turned off once 
you are familiar with FEAT.  

The Featwatcher button allows you to tell Feat not to start the graphical 
program Featwatcher that shows you how the FEAT analysis is progressing. If you 
are running lots of analyses you probably want to turn this off; you can view the 
same logging information by looking at the report.log files in any FEAT directories 
instead, or start the Featwatcher GUI by hand.  

For the above two settings, you can control the default behaviour of the FEAT 
GUI by putting the following, with appropriate values set, in a file called .fsl in 
your home directory;  

set fmri(help_yn) 1  
set fmri(featwatcher_yn) 1  

If you are using FEAT to carry out multiple analyses, you might want to do this 
overnight, to reduce the load on your computer. You can use the Delay feature to 
tell FEAT how long to wait before starting the analyses.  

Brain/background threshold, % This is automatically calculated, as a % of the 
maximum input image intensity. It is used in intensity normalisation, brain mask 
generation and various other places in the FEAT analysis.  

If you are just re-running post-stats or registration, you can either choose to 
Overwrite original post-stats results and registration results, inside the existing 
FEAT directory, or Copy original FEAT directory for a complete copy of the 
original FEAT directory, with the new results in it.  

�����
First set the Number of analyses. At first level this is the number of identical 
analyses you want to carry out. At higher level this is the number of FEAT 
directories to be input from the lower-level analysis to the higher.  

Next set the filename of the 4D input image (e.g. /home/sibelius/func.hdr). You 
can setup FEAT to process many input images, one after another, as long as they 
all require exactly the same analysis. Each one will generate its own FEAT 
directory, the name of which is based on the input data's filename.  

Alternatively, if you are running either just Post-stats or Registration only, or 
running Higher-level analysis, the selection of 4D data changes to the selection 
of FEAT directories. Note that in this case you should select the FEAT directories 
before setting up anything else in FEAT (such as changing the thresholds). This is 
because quite a lot of FEAT settings are loaded from the first selected FEAT 
directory, possibly over-writing any settings which you wish to change!  
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If the Output directory is left blank, the output FEAT directory name is derived 
from the input data name. (For higher-level analysis, the output name is derived 
from the first lower-level FEAT directory selected as input.) If, however, you wish 
to explicitly choose the output FEAT directory name, for example, so that you can 
include in the name a hint about the particular analysis that was carried out, you 
can set this here. This output directory naming behaviour is modified if you are 
setting up multiple first-level analyses, where you are selecting multiple input data 
sets and will end up with multiple output FEAT directories. In this case, whatever 
you enter here will be used and appended to what would have been the default 
output directory name if you had entered nothing. For example, if you are setting 
up 3 analyses with input data names /home/neo/fmri1.hdr, 
/home/neo/fmri2.hdr and /home/neo/fmri3.hdr, and set the output name to 
analysisA, the output directories will end up as 
/home/neo/fmri1_analysisA.feat etc.  

Total volumes shows the number of FMRI volumes in the time series, including 
any initial volumes that you wish to delete. This will get set automatically once valid 
input data has been selected. The reason for allowing you to set this number by 
hand before selecting data is so that you can setup and view a model without 
having any data, for experimental planning purposes etc.  

Delete volumes controls the number of initial FMRI volumes to delete before 
any further processing. You should have decided on this number when the scans 
were acquired. Typically your experiment would have begun after these initial scans 
(sometimes called "dummy scans"). These should be the volumes that are not 
wanted because steady-state imaging has not yet been reached - typically two or 
three volumes. These volumes are deleted as soon as FEAT is started, so all 4D 
data sets produced by FEAT will not contain the deleted volumes. Note that 
Delete volumes should not be used to correct for the time lag between 
stimulation and the measured response - this is corrected for in the design matrix 
by convolving the input stimulation waveform with a blurring-and-delaying 
haemodynamic response function. Most importantly, remember when setting up 
the design matrix, that the timings in the design matrix start at t=0 seconds, and 
this corresponds to the start of the first image taken after the deleted scans. In 
other words, the design matrix starts AFTER the deleted scans have been deleted.  

TR controls the time (in seconds) between scanning successive FMRI volumes.  
The High pass filter cutoff controls the longest temporal period that you will 

allow. A sensible setting in the case of an ABAB or ABACABAC type block design 
is the (A+B) or (A+B+A+C) total cycle time. For event-related designs the rule is 
not so simple, but in general the cutoff can typically be reduced at least to 50s. This 

value is setup here rather than in Pre-stats because it also affects the generation of 
the model; the same high pass filtering is applied to the model as to the data, to get 
the best possible match between the model and data. 

!��"�����
Slice timing correction corrects each voxel's time-series for the fact that later 
processing assumes that all slices were acquired exactly half-way through the 
relevant volume's acquisition time (TR), whereas in fact each slice is taken at 
slightly different times. Slice timing correction works by using (Hanning-
windowed) sinc interpolation to shift each time-series by an appropriate fraction of 
a TR relative to the middle of the TR period. It is necessary to know in what order 
the slices were acquired and set the appropriate option here. If slices were acquired 
from the bottom of the brain to the top select Regular up. If slices were acquired 
from the top of the brain to the bottom select Regular down. If the slices were 
acquired with interleaved order (0, 2, 4 ... 1, 3, 5 ...) then choose the Interleaved 
option. If slices were not acquired in regular order you will need to use a slice order 
file or a slice timings file. If a slice order file is to be used, create a text file with a 
single number on each line, where the first line states which slice was acquired first, 
the second line states which slice was acquired second, etc. The first slice is 
numbered 1 not 0. If a slice timings file is to be used, put one value (ie for each 
slice) on each line of a text file. The units are in TRs, with 0.5 corresponding to no 
shift. Therefore a sensible range of values will be between 0 and 1. 

You will normally want to apply Motion correction; this attempts to remove the 
effect of subject head motion during the experiment. MCFLIRT uses FLIRT 
(FMRIB's Linear Registration Tool) tuned to the problem of FMRI motion 
correction, applying rigid-body transformations. Note that there is no "spin 
history" (aka "correction for movement") option with MCFLIRT. This is because 
this is still a poorly understood correction method which is under further 
investigation.  

By default BET brain extraction is applied to create a brain mask from the first 
volume in the FMRI data. This is normally better than simple intensity-based 
thresholding for getting rid of unwanted voxels in FMRI data. Note that here, BET 
is setup to run in a quite liberal way so that there is very little danger of removing 
valid brain voxels. If the field-of-view of the image (in any direction) is less than 
30mm then BET is turned off by default.  

Spatial smoothing is carried out on each volume of the FMRI data set 
separately. This is intended to reduce noise without reducing valid activation; this is 
successful as long as the underlying activation area is larger than the extent of the 
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smoothing. Thus if you are looking for very small activation areas then you should 
maybe reduce smoothing from the default of 5mm, and if you are looking for 
larger areas, you can increase it, maybe to 10 or even 15mm. To turn off spatial 
smoothing simply set FWHM to 0.  

Intensity normalisation forces every FMRI volume to have the same mean 
intensity. For each volume it calculates the mean intensity and then scales the 
intensity across the whole volume so that the global mean becomes a preset 
constant. This step is normally discouraged - hence is turned off by default. When 
this step is not carried out, the whole 4D data set is still normalised by a single 
scaling factor ("grand mean scaling") - each volume is scaled by the same amount. 
This is so that higher-level analyses are valid.  

Highpass temporal filtering uses a local fit of a straight line (Gaussian-
weighted within the line to give a smooth response) to remove low frequency 
artefacts. This is preferable to sharp rolloff FIR-based filtering as it does not 
introduce autocorrelations into the data. By default the same filtering will also be 
applied to the model.  

"�����#����������$�

���������	
������
	������
General linear modelling allows you to describe one or more stimulation types, 
and, for each voxel, a linear combination of the modelled response to these 
stimulation types is found which minimises the unmodelled noise in the fitting. If 
you are not familiar with the concepts of the GLM and contrasts of parameter 
estimates, then you should now read Appendix A.  

For normal first-level time series analysis you should Use FILM prewhitening 
to make the statistics valid and maximally efficient. For other data - for example, 
very long TR (>30s) FMRI data, PET data or data with very few time points (<50) 
- this should be turned off.  

You can setup FILM easily for simple designs by using the FILM "wizard" - 
press the Simple model setup button. Then choose whether to setup ABAB... or 
ABACABAC... designs (block or single-event). The A blocks will normally be rest 
(or control) conditions. Enter the timings (in seconds) for these periods and press 
Process; FILM will be automatically setup for you.  

If you want to setup a more complex model, or adjust the setup created by the 
wizard, press Full model setup button. This is now described in detail.  

����
First set the Number of original EVs (explanatory variables) - basic number of 
explanatory variables in the design matrix; this means the number of different 
effects that you wish to model - one for each modelled stimulation type, and one 
for each modelled confound. For first-level analyses, it is common for the final 
design matrix to have a greater number of real EVs than this original number; for 
example, when using basis functions, each original EV gives rise to several real 
EVs.  

Now you need to setup each EV separately. Choose the basic shape of the 
waveform that describes the stimulus or confound that you wish to model. The 
basic waveform should be exactly in time with the applied stimulation, i.e., not 
lagged at all. This is because the measured (time-series) response will be delayed 
with respect to the stimulation, and this delay is modelled in the design matrix by 
convolution of the basic waveform with a suitable haemodynamic response 
function (see below).  

For an on/off (or a regularly-spaced single-event) experiment choose a square 
wave. To model single-event experiments with this method, the On periods will 
probably be small - e.g., 1s or even less.  

For sinusoidal modelling choose the Sinusoid option and select the number of 
Harmonics (or overtones) that you want to add to the fundamental frequency.  

For a single-event experiment with irregular timing for the stimulations, a custom 
file can be used. With Custom (1 entry per volume), you specify a single value for 
each timepoint. The custom file should be a raw text file, and should be a list of 
numbers, separated by spaces or newlines, with one number for each volume (after 
subtracting the number of deleted images). These numbers can either all be 0s and 
1s, or can take a range of values. The former case would be appropriate if the same 
stimulus was applied at varying time points; the latter would be appropriate, for 
example, if recorded subject responses are to be inserted as an effect to be 
modelled. Note that it may or may not be appropriate to convolve this particular 
waveform with an HRF - in the case of single-event, it is.  

For even finer control over the input waveform, choose Custom (3 column 
format). In this case the custom file consists of triplets of numbers; you can have 
any number of triplets. Each triplet describes a short period of time and the value 
of the model during that time. The first number in each triplet is the onset (in 
seconds) of the period, the second number is the duration (in seconds) of the 
period, and the third number is the value of the input during that period. The same 
comments as above apply, about whether these numbers are 0s and 1s, or vary 
continuously. The start of the first non-deleted volume correpsonds to t=0.  
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Note that whilst ALL columns are demeaned before model fitting, neither 
custom format will get rescaled - it is up to you to make sure that relative scaling 
between different EVs is sensible. If you double the scaling of values in an EV you 
will halve the resulting parameter estimate, which will change contrasts of this EV 
against others.  

If you select Interaction then you can set which EVs this EV models the 
interaction between. This EV is produced by multiplying together selected EVs, 
and allows the modelling of the non-additive interaction between the selected EVs. 
This requires that the EVs are sometimes on at the same time, and sometimes on 
separately.  

If you have chosen a Square or Sinusoid basic shape, you then need to specify 
what the timings of this shape are. Skip is the initial period of zeros (in seconds) 
before the waveform commences. Off is the duration (seconds) of the "Off" 
periods in the square wave. On is the duration (seconds) of the "On" periods in the 
square wave. Period is the period (seconds) of the Sinusoid waveform. Phase is 
the phase shift (seconds) of the waveform; by default, after the Skip period, the 
square wave starts with a full Off period and the Sinusoid starts by falling from 
zero. However, the wave can be brought forward in time according to the phase 
shift. Thus to start with half of a normal Off period, enter the Phase as half of the 
Off period. To start with a full On period, enter the same as the Off period. Stop 
after is the total duration (seconds) of the waveform, starting after the Skip period. 
"-1" means do not stop. After stopping a waveform, all remaining values in the 
model are set to zero.  

Convolution sets the form of the HRF (haemodynamic response function) 
convolution that will be applied to the basic waveform. This blurs and delays the 
original waveform, in an attempt to match the difference between the input 
function (original waveform, i.e., stimulus waveform) and the output function 
(measured FMRI haemodynamic response). If the original waveform is already in 
an appropriate form, e.g., was sampled from the data itself, None should be 
selected. The next three options are all somewhat similar blurring and delaying 
functions. Gaussian is simply a Gaussian kernel, whose width and lag can be 
altered. Gamma is a Gamma variate (in fact a normalisation of the probability 
density function of the Gamma function); again, width and lag can be altered. 
Double-Gamma HRF is a preset function which is a mixture of two Gamma 
functions - a standard positive function at normal lag, and a small, delayed, inverted 
Gamma, which attempts to model the late undershoot.  

The remaining convolution options setup different basis functions. This means 
that the original EV waveform will get convolved by a basis set of related but 

different convolution kernels - a set of Gammas of different widths and lags, a set 
of sinusoids of differing frequencies or a set of finite-impulse-response (FIR) filters 
(with FIR the convolution kernel is represented as a set of discrete fixed-width 
impulses). Therefore the original EV will generate a set of real EVs, one for 
each basis function.  

You should normally apply the same temporal filtering to the model as you have 
applied to the data, as the model is designed to look like the data before temporal 
filtering was applied. In this way, long-time-scale components in the model will be 
dealt with correctly. This is set with the Apply temporal filtering option.  

Adding a fraction of the temporal derivative of the blurred original waveform is 
equivalent to shifting the waveform slightly in time, in order to achieve a slightly 
better fit to the data. Thus adding in the temporal derivative of a waveform into 
the design matrix allows a better fit for the whole model, reducing unexplained 
noise, and increasing resulting statistical significances. Thus, setting Add temporal 
derivative produces a new waveform in the final design matrix (next to the 
waveform from which it was derived) This option is not available if you are using 
basis functions.  

Orthogonalising an EV with respect to other EVs means that it is completely 
independent of the other EVs, i.e. contains no component related to them. Most 
sensible designs are already in this form - all EVs are at least close to being 
orthogonal to all others. However, this may not be the case; you can use this facility 
to force an EV to be orthogonal to some or all other EVs. This is achieved by 
subtracting from the EV that part which is related to the other EVs selected here. 
An example use would be if you had another EV which was a constant height spike 
train, and the current EV is derived from this other one, but with a linear increase 
in spike height imposed, to model an increase in response during the experiment 
for any reason. You would not want the current EV to contain any component of 
the constant height EV, so you would orthogonalise the current EV wrt the other.  

���	
����
Each EV (explanatory variable, i.e., waveform) in the design matrix results in a PE 
(parameter estimate) image. This estimate tells you how strongly that waveform fits 
the data at each voxel - the higher it is, the better the fit. For an unblurred square 
wave input (which will be scaled in the model from -0.5 to 0.5), the PE image is 
equivalent to the "mean difference image". To convert from a PE to a t statistic 
image, the PE is divided by its standard error, which is derived from the residual 
noise after the complete model has been fit. The t image is then transformed into a 
Z statistic via standard statistical transformation. As well as Z images arising from 
single EVs, it is possible to combine different EVs (waveforms) - for example, to 
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see where one has a bigger effect than another. To do this, one PE is subtracted 
from another, a combined standard error is calculated, and a new Z image is 
created.  

All of the above is controlled by you, by setting up contrasts. Each output Z 
statistic image is generated by setting up a contrast vector; thus set the number of 
outputs that you want, using Number of contrasts. To convert a single EV into a 
Z statistic image, set its contrast value to 1 and all others to 0. Thus the simplest 
design, with one EV only, has just one contrast vector, and only one entry in this 
contrast vector; 1. To add more contrast vectors, increase the Number of 
contrasts. To compare two EVs, for example, to subtract one stimulus type (EV1) 
from another type (EV2), set EV1's contrast value to -1 and EV2's to 1. A Z 
statistic image will be generated according to this request.  

For first-level analyses, it is common for the final design matrix to have a greater 
number of real EVs than the original number; for example, when using basis 
functions, each original EV gives rise to several real EVs. Therefore it is possible 
in many cases for you to setup contrasts and F-tests with respect to the original 
EVs, and FEAT will work out for you what these will be for the final design 
matrix. For example, a single [1] contrast on an original EV for which basis 
function HRF convolutions have been chosen will result in a single [1] contrast for 
each resulting real EV, and then an F-test across these. In general you can switch 
between setting up contrasts and F-tests with respect to Original EVs and Real 
EVs; though of course if you fine-tune the contrasts for real EVs and then revert 
to original EV setup some settings may be lost. When you View the design matrix 
or press Done at the end of setting up the model, an Original EVs setup will get 
converted to the appropriate Real EVs settings.  

An important point to note is that you should not test for differences between 
different conditions (or at higher-level, between sessions) by looking for 
differences between their separate individual analyses. One could be just above 
threshold and the other just below, and their difference might not be significant. 
The correct way to tell whether two conditions or session's analyses are 
significantly different is to run a differential contrast like [1 -1] between them (or, at 
higher-level, run a higher-level FEAT analysis to contrast lower-level analyses); this 
contrast will then get properly thresholded to test for significance.  

There is another important point to note when interpreting differential (eg [1 -1]) 
contrasts. This is that you are quite likely to only want to check for A>B if both are 
positive. Don't forget that if both A and B are negative then this contrast could still 
come out significantly positive! In this case, the thing to do is to use the Contrast 

masking feature (see below); setup contrasts for the individual EVs and then mask 
the differential contrast with these.  

��������
F-tests enable you to investigate several contrasts at the same time, for example to 
see whether any of them (or any combination of them) is significantly non-zero. 
Also, the F-test allows you to compare the contribution of each contrast to the 
model and decide on significant and non-significant ones. F-tests are non-
directional (i.e. test for "positive" and "negative" activation).  

One example of F-test usage is if a particular stimulation is to be represented by 
several EVs, each with the same input function (e.g. square wave or custom timing) 
but all with different HRF convolutions - i.e. several basis functions. Putting all 
relevant resulting parameter estimates together into an F-test allows the complete 
fit to be tested against zero without having to specify the relative weights of the 
basis functions (as one would need to do with a single contrast). So - if you had 
three basis functions (EVs 1,2 and 3) the wrong way of combining them is a single 
(T-test) contrast of [1 1 1]. The right way is to make three contrasts [1 0 0] [0 1 0] 
and [0 0 1] and enter all three contrasts into an F-test. As described above, FEAT 
will automatically do this for you if you set up contrasts for original EVs instead 
of real EVs.  

You can carry out as many F-tests as you like. Each test includes the particular 
contrasts that you specify by clicking on the appropriate buttons.  

�������
To view the current state of the design matrix, press View design. This is a 
graphical representation of the design matrix and parameter contrasts. The bar on 
the left is a representation of time, which starts at the top and points downwards. 
The white marks show the position of every 10th volume in time. The red bar 
shows the period of the longest temporal cycle which was passed by the highpass 
filtering. The main top part shows the design matrix; time is represented on the 
vertical axis and each column is a different (real) explanatory variable (e.g., stimulus 
type). Both the red lines and the black-white images represent the same thing - the 
variation of the waveform in time. Below this is shown the requested contrasts; 
each row is a different contrast vector and each column refers to the weighting of 
the relevant explanatory variable. Thus each row will result in a Z statistic image. If 
F-tests have been specified, these appear to the right of the contrasts; each column 
is a different F-test, with the inclusion of particular contrasts depicted by filled 
squares instead of empty ones.  
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If you have more than one EV and you press Covariance you will see a 
graphical representation of the covariance matrix of the design matrix. The first 
matrix shows the absolute value of the normalised correlation of each EV with 
each EV. If a design is well-conditioned (i.e. not approaching rank deficiency) then 
the diagonal elements should be white and all others darker. So - if there are any 
very bright elements off the diagonal, you can immediately tell which EVs are too 
similar to each other - for example, if element [1,3] (and [3,1]) is bright then 
columns 1 and 3 in the design matrix are possibly too similar. Note that this 
includes all real EVs, including any added temporal derivatives, basis functions, etc. 
The second matrix shows a similar thing after the design matrix has been run 
through SVD (singular value decomposition). All non-diagonal elements will be 
zero and the diagonal elements are given by the eigenvalues of the SVD, so that a 
poorly-conditioned design is obvious if any of the diagonal elements are black.  

When you have finished setting up the design matrix, press Done. This will 
dismiss the GLM GUI, and will give you a final view of the design matrix.  

%�������&������������&����������
If you are not carrying out a Full analysis and are re-running Post-stats, a button 
appears to allow you to Edit contrasts. This allows setup of contrasts and F-tests, 
to be run on the previous analysis.  

If you choose a mask for Pre-threshold masking then all stats images will be 
masked by the chosen mask before thresholding. There are two reasons why you 
might want to do this. The first is that you might want to constrain your search for 
activation to a particular area. The second is that in doing so, you are reducing the 
number of voxels tested and therefore will make any multiple-comparison-
correction in the thresholding less stringent. The mask image chosen does not have 
to be a binary mask - for example, it can be a thresholded stats image from a 
previous analysis (in the same space as the data to be analysed here); only voxels 
containing zero in the mask image will get zeroed in this masking process. If pre-
threshold masking is used, it is still necessary to carry out thresholding.  

Thresholding: After carrying out the initial statistical test, the resulting Z 
statistic image is then normally thresholded to show which voxels or clusters of 
voxels are activated at a particular significance level.  

If Cluster thresholding is selected, a Z statistic threshold is used to define 
contiguous clusters. Then each cluster's estimated significance level (from GRF-
theory) is compared with the cluster probability threshold. Significant clusters are 
then used to mask the original Z statistic image for later production of colour 
blobs. This method of thresholding is an alternative to Voxel-based correction, and 

is normally more sensitive to activation. You may well want to increase the cluster 
creation Z threshold if you have high levels of activation.  

The FEAT web page report includes a table of cluster details, viewed by clicking 
on the relevant colour-overlay image. Note that cluster p-values are not given for 
contrasts where post-threshold contrast masking (see below) is applied, as there is 
not a sensible p-value associated with the new clusters formed after masking.  

If Voxel thresholding is selected, GRF-theory-based maximum height 
thresholding is carried out, with thresholding at the level set, using one-tailed 
testing. This test is less overly-conservative than Bonferroni correction.  

You can also choose to simply threshold the uncorrected Z statistic values, or 
apply no thresholding at all.  

Contrast masking: You can setup the masking of contrasts by other contrasts; 
after thresholding of all contrasts has taken place you can further threshold a given 
Z statistic image by masking it with non-zeroed voxels from other contrasts.  

This means that of the voxels which passed thresholding in the contrast (or F-
test) of interest, only those which also survived thresholding in the other contrasts 
(or F-tests) are kept.  

As a further option, the generated masks can be derived from all positive Z 
statistic voxels in the mask contrasts rather than all voxels that survived 
thresholding.  

Rendering: The Z statistic range selected for rendering is automatically 
calculated by default, to run from red (minimum Z statistic after thresholding) to 
yellow (maximum Z statistic). If more than one colour rendered image is to be 
produced (i.e., when multiple constrasts are created) then the overall range of Z 
values is automatically found from all of the Z statistic images, for consistent Z 
statistic colour-coding.  

If multiple analyses are to be carried out separately, Use preset Z min/max 
should be chosen, and the min/max values set by hand. Again, this ensures 
consistency of Z statistic colour-coding - if several experiments are to be reported 
side-by-side, colours will refer to the same Z statistic values in each picture. When 
using this option, you should choose a conservatively wide range for the min and 
max (e.g., min=1, max=15), to make sure that you do not carry out unintentional 
thresholding via colour rendering.  

With Solid colours you don't see any sign of the background images within the 
colour blobs; with Transparent colours you will see through the colour blobs to 
the background intensity.  

If you are running a Higher-level analysis you can select what image will be 
used as the background image for the activation colour overlays. The default of 
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Mean highres is probably the best for relating activation to underlying structure. 
For a sharper underlying image, (but one which is not so representative of the 
group of subjects), you can instead choose to use the highres image from the first 
selected subject. You can alternatively choose to use the original lowres functional 
data for the overlays, or the standard-space template image.  

������������
Before any multi-session or multi-subject analyses can be carried out, the different 
sessions need to be registered to each other. This is made easy with FEAT, by 
saving the appropriate transformations inside the FEAT directories; the 
transformations are then applied when group statistics is carried out, to transform 
any relevant statistic images into the common space. By doing this (saving the 
relevant registration transformations and only applying them to the stats images 
later) a lot of disk space is saved.  

Registration inside FEAT uses FLIRT (FMRIB's Linear Image Registration 
Tool). This is a very robust affine registration program which can register similar 
type images (intra-modal) or different types (inter-modal).  

Typically, registration in FEAT is a two-stage process. First an example FMRI 
low resolution image is registered to an example high resolution image (often the 
same subject's T1-weighted structural). The transformation for this is saved into 
the FEAT directory. Then the high res image is registered to a standard image 
(normally a T1-weighted image in standard space, such as the MNI 152 average 
image). This transformation, also, is saved. Finally, the two transformations are 
combined into a third, which will take the low resolution FMRI images (and the 
statistic images derived from the first-level analyses) straight into standard space, 
when applied later, during group analysis.  

You can carry out registration for each first-level analysis at the same time as the 
original analysis, or get FEAT to "register" a pre-existing FEAT directory, at a later 
time. In the latter case, change the Full analysis to Registration only.  

The Initial structural image is the high resolution structural image which the 
low resolution functional data will be registered to, and this in turn will be 
registered to the main highres image. It only makes sense to have this initial highres 
image if a main highres image is also specified and used in the registration.  

One example of an initial highres structural image might be a medium-quality 
structural scan taken during a day's scanning, if a higher-quality image has been 
previously taken for the subject. A second example might be a full-brain image 
with the same MR sequence as the functional data, useful if the actual functional 

data is only partial-brain. It is strongly recommended that this image have non-
brain structures already removed, for example by using BET.  

If the field-of-view of the functional data (in any direction) is less than 120mm, 
then the registration of the functional data will by default have a reduced degree-of-
freedom, for registration stability.  

If you are attempting to register partial field-of-view functional data to a whole-
brain image then 3 DOF is recommended - in this case only translations are 
allowed.  

If the orientation of any image is different from any other image it may be 
necessary to change the search to Full search.  

The Main structural image is is the main high resolution structural image 
which the low resolution functional data will be registered to (optionally via the 
initial structural image), and this in turn will be registered to the standard brain. 
It is strongly recommended that this image have non-brain structures already 
removed, for example by using BET.  

Standard space refers to the standard (reference) image; it should be an image 
already in Talairach space, ideally with the non-brain structures already removed.  

�����'���(������������
When you have finished setting up FEAT, press Go to run the analysis. Once 
FEAT is running, you can either Exit the GUI, or setup further analyses.  

The Save and Load buttons enable you to save and load the complete FEAT 
setup to and from file. The filename should normally be chosen as design.fsf - this 
is also the name which FEAT uses to automatically save the setup inside a FEAT 
directory. Thus you can load in the setup that was used on old analyses by loading 
in this file from old FEAT directories.  

The Utils button produces a menu of FEAT-related utilities:  

• Load FEAT results into MEDx (only seen if FEAT is run from within 
MEDx). This opens a new folder and loads in results from a FEAT 
directory, setting up each stats image to be "time series clickable".  

• Featquery is a program which allows you to interrogate FEAT results by 
defining a mask or set of co-ordinates (in standard-space, highres-space or 
loweres-space) and get mean stats values and time-series.  

• Simple stats colour rendering allows you to overlay one or two stats images 
on a background image of the same size.  

• Colour render FEAT stats in high res produces colour rendered stats 
images in a selected FEAT directory, using either the original high 
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resolution structural image as the background, or the structural image 
transformed into Talairach space as the background. This script starts by 
transforming stats into high resolution space and then produces 3D colour 
overlay images. 2D pictures of these are then saved to file and the 3D files 
removed to save disk space, but this removal can be turned off in the GUI. 

��'��"�����!�����
FEAT generates a set of time-series plots for data vs model for peak Z voxels. The 
main FEAT report web page contains a single plot for each contrast (from the 
peak voxel); clicking on this takes you to more plots related to that contrast, 
including also, in the case of cluster-based thresholding, plots averaged over all 
significant voxels.  

Plots of full model fit vs data show the original data and the complete model fit 
given by the GLM analysis.  

Plots of cope partial model fit vs reduced data show the model fit due simply 
to the contrast of interest versus that part of the data which is relevant to the 
reduced model (i.e. full data minus full model plus cope partial model). This 
generally is only easily interpretable in the case of simple non-differential contrasts.  

Peri-stimulus plots show the same plots as described above but averaged over 
all "repeats" of events, whether ON-OFF blocks in a block-design, or events in an 
event-related design. Thus you get to see the average response shape. Note that 
FEAT tries to guess what an "event" is in your design automatically, so in complex 
designs this can give somewhat strange looking plots! The peri-stimulus plots are 
for the peak voxel only; one pair of full/partial plots is produced for each EV in 
the design matrix for that peak voxel, with the "events" defined from that EV only. 

)����"����������
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For higher-level analysis (e.g. analysis across sessions or across subjects) FEAT 
uses FLAME (FMRIB's Local Analysis of Mixed Effects). FLAME uses 
sophisticated methods for modelling (see related techreport TR01CB1) and 
estimating the inter-session or inter-subject random-effects component of the 
mixed-effects variance, by using MCMC to get an accurate estimation of the true 
random-effects variance and degrees of freedom at each voxel.  

"Mixed-effects" (ME) variance is the sum of "fixed-effects" (FE) variance (the 
within-session across-time variances estimated in the first-level analyses) and 
"random-effects" (RE) variance (the "true" cross-session variances of first-level 

parameter estimates). Note that the labels "mixed effects" and "random effects" are 
often (incorrectly) used interchangeably, partly because they are in practice often 
(but, importantly, not always) quite similar.  

Thus, when referring to FEAT-based group analysis, it should be described as 
mixed-effects, although it may avoid confusion to also add explanatory parenthesis, 
for example: "mixed-effects (often referred to as 'random-effects') group analysis 
was carried out".  

One factor that makes FEAT's approach to higher-level modelling particularly 
powerful is that it is easy to model and estimate different variances for different 
groups in the model. For example, an unpaired two-group comparison (e.g. 
between controls and patients) can be analysed with separate estimates of variance 
for each group. It is simply a case of specifying in the GUI what group each subject 
belongs to. (Note - FLAME does not model different group variances differently 
in the case of higher-level F-tests, due to the complexity of the resulting 
distributions; this may be addressed in the future.)  

A second sophistication not normally available in multi-level analyses is the 
carrying-up of the first-level (FE) variances to the higher-level analyses. This means 
that the FE component of the higher-level ME variance can be taken into account 
when attempting to estimate the ME variance. One reason why it is suboptimal to 
simply use the directly-estimated ME variance is that this is often in practice lower 
than the estimated FE variance, a logical impossibility which implies negative RE 
variance. FEAT forces the RE variance in effect to be non-negative, giving a better 
estimate of ME variance.  

Another reason for wanting to carry up first-level variances to the higher-level 
analyses is that it is not then necessary for first-level design matrices to be identical 
(ie "balanced designs" - for example having the same number of time points or 
event timings). (Note though: the "height" of design matrix waveforms at first-level 
must still be compatible across analyses.)  

A third advantage in higher-level analysis with FEAT is that it is not necessary 
for different groups to have the same number of subjects (another aspect to design 
balancing) for the statistics to be valid, because of the ability to model different 
variances in different groups.  

The higher-level estimation method in FEAT (FLAME) uses the above 
modelling theory and estimates the higher-level parameter estimates and ME 
variance using sophisticated estimation techniques. First, the higher-level model is 
fit using a fast approximation to the final estimation ("FLAME stage 1"). Then, all 
voxels which are close to threshold (according to the selected contrasts and 
thresholds) are processed with a much more sophisticated estimation process 
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involving implicit estimation of the ME variance, using MH MCMC (Metropolis-
Hastings Markov Chain Monte Carlo sampling) to give the distribution for higher-
level contrasts of parameter estimates, to which a general t-distribution is then fit. 
Hypothesis testing can then be carried out on the fitted t-distribution to give 
inference based upon the best implicit estimation of the ME variance. 

����������� ����	���!���"�
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For figures showing the file and directory structures for first- and second-level 
FEAT analyses, see the Output section.  

First change First-level analysis to Higher-level analysis. Note that the only 
processing option available is Stats + Post-stats; this is because at higher-level 
both Stats and Post-stats always need setting up, as the thresholding to be carried 
out affects the functioning of the core stats estimation. For the same reason it is 
not possible to re-threshold a higher-level analysis - the whole higher-level analysis 
must be re-run.  

You can choose whether your higher-level design matrix will be applied to a set 
of lower-level cope images or a set of lower-level FEAT directories. In the 
latter, more normal, case, each contrast in the lower-level FEAT directories will 
have the higher-level model applied, each resulting in its own FEAT directory 
within the new group FEAT directory.  

Now set the Number of analyses and Select FEAT directories (the first-level 
FEAT analyses to be fed into this higher-level analysis). FEAT will produce a new 
directory containing the group stats results; unless you specify an output directory 
name, the output directory name will be derived from the name of the first selected 
first-level FEAT directory. The suffix .gfeat is used.  

Now setup the Stats. OLS (ordinary least squares) is a fast estimation technique 
which ignores all lower-level variance estimation and applies a very simple higher-
level model. For the most accurate estimation of higher-level activation you should 
use FLAME (FMRIB's Local Analysis of Mixed Effects) modelling and estimation. 
This is a sophisticated two-stage process using Bayesian modelling and estimation 
(for example it allows separate modelling of the variance in different subject 
groups, and forces random effects variance to be non-negative). The first stage of 
FLAME is significantly more accurate than OLS, and nearly as fast. The second 
stage of FLAME increases accuracy slightly over the first stage, but is quite a lot 
slower (typically 45-200 minutes). Therefore we recommend that you use the 
default FLAME setting unless you are in a hurry, in which case we recommend 
using the FLAME stage 1 only option. 

Next go to the full model setup. First choose the Number of EVs (different 
effects to be modelled). Next, the Number of groups is the number of different 

groups (of lower-level sessions or subjects). If you ask for more than one group, 
each group will end up with a separate estimate of variance for the higher-level 
parameter estimates; for example, if the first 10 inputs are first-level FEAT outputs 
from control subjects and the next 10 inputs are first-level FEAT outputs from 
patients, you can setup two different groups and each will end up with its own 
variance estimates, possibly improving the final modelling and estimation quality 
(see examples below for further clarification).  

Unlike with first-level analyses, the data (and the model) does not get demeaned. 
This is because mean effects are usually of interest! One effect of this is that a two-
group unpaired model needs 2 EVs - one for finding each group's mean; it will not 
work to have a single EV containing 1's and -1's.  

Now setup the required Contrasts & F-tests and Post-stats (see examples 
below).  

The higher-level design matrix is applied separately to each of the lower-level 
contrasts; thus each lower-level contrast will result in a new FEAT directory within 
the new top-level group FEAT directory. When FEAT has completed the higher-
level analyses the new top-level group FEAT output directory contains a web page 
report which contains: a link to each of the original lower-level FEAT directories; a 
link to each of the higher-level FEAT analyses (one for each lower-level contrast); 
the picture of the higher-level design matrix.  

We now give specific examples of how to set up the most common high-level 
analyses.  

��������	���"!�	
���#$����
%����������&�
We have 8 subjects all in one group and want the mean group effect. Does the 
group activate on average?  
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We have two groups of different kinds of subjects (eg 9 patients and 7 controls) 
with potentially different cross-subject variance, so we will specifiy two group 
"memberships" so that FEAT estimates each group's variance separately. We want 
the mean group difference, and will look in both directions, hence the two 
contrasts. Note that we cannot setup this model with a single EV (see above).  

 

*
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�	���������&�
We have a group of 8 subjects scanned under two different conditions, A and B. 
We enter the condition A analyses as the first 8 inputs, and the condition B 
analyses as the second 8 inputs. Make sure that the subjects are in the same order 
within each group of 8! We need one EV for the A-B differences, and then one 
extra EV for each subject, making 9 in all. EVs 2-9 model each subject's mean 
effect - in this analysis this is a confound, i.e. parameter estimates 2-9 are ignored, 
but without this part of the model, the mean effects would intefere with the 
estimation of the A-B paired differences. A contrast with a one for EV1 and zeros 
elsewhere tests for A-B paired differences.  

 
 

������������� +� ��������,-���� #.���
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5 subjects each have three sessions. Because the number of sessions is low, we are 
going to make the estimation of cross-session variance more robust by assuming it 
is the same for all subjects and putting all subjects into one second-level analysis. 
Thus for this second-level analysis:  

Now we want the mean group effect, across subjects, achieved with a third-level 
analysis. Select Inputs are lower-level cope images and select the 5 cope images 
created at second-level, found inside the <something>.gfeat/cope1.feat/stats 
directory.  
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For example, three groups of subjects, with the question - is any group activating 
on average?  
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We have 7 subjects all in one group. We also have additional measurements such as 
age, disability scale or behavioural measures such as mean reaction times. The 
additional effect of the extra measures can be found by entering this as an extra EV 
which has been orthogonalised wrt the group mean EV - so in this case simply 
demeaned:  

 
 

"/$�"�0�1�)
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We have 8 subjects and 1 factor at 4 levels. To compare a level with another we 
could just have one EV per level. However, if we want to ask the ANOVA 
question - where is there any treatment effect then we can do the following. EV1 
takes out the global mean (ie across all levels of the factor). EV2 fits cell 1 relative 
to this mean etc. Thus contrast 1 gives cell 1 (level 1) relative to the global mean 
etc. A fourth contrast is not necessary as that would add no extra information. The 
F-test then tests for any deviation from the mean - ie any difference between the 
levels.  

Note - the first two inputs are level 1, the next two are level 2 etc.  

 
 

"/$�"�0�3�)
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Fixed Effects  

We have 8 subjects and 2 factors, each at 2 levels. To carry out a standard 
ANOVA we use the following, the three F-tests giving the standard ANOVA 
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results for factor A, factor B and the interaction effect. This assumes that both 
factors are fixed effects.  

 

 
 

 
 
Random Effects  
If both factors are random effects then the F-tests for the effects of the factors are 
different - the denominator in the F is derived from the interaction effect and not 
the within-cell errors. In this case, the relevant F images for factors A and B can be 
formed as Fa=fstat1/fstat3 and Fb=fstat2/fstat3. In order to carry this out, first 
run FEAT using the above design. Then:  
cd <featdir>/stats 
 
avwmaths fstat1 -div fstat3 fstata 
avwmaths fstat2 -div fstat3 fstatb 
 
ftoz -zout zfstata fstata 1 1 
ftoz -zout zfstatb fstatb 1 1 
You could then do thresholding on zfstata and zfstatb with easythresh.  
 

Mixed Effects  
If one factor is random and the other is fixed then we want a mixed effects 
analysis. In this case the fstat which needs the different denominator is the one 
associated with the fixed factor. For example, if factor A is fixed and factor B is 
random, then fstat2 already gives you the effect of factor B and for factor A you 
need to create Fa=fstat1/fstat3 as above.  

"/$�"�0�4�)
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Fixed Effects  

We have 16 subjects and 3 factors, each at 2 levels. To carry out a standard 
ANOVA we use the following, the F-tests giving the standard ANOVA results for 
the factors and their interactions.  

 
 
Random/Mixed Effects  
The following table shows how to test for factor effects with various models:  
model A B C F(A) F(B) F(C) F(AB) F(AC) F(BC) F(ABC) 
1 F F F fstat1 fstat2 fstat3 fstat4 fstat5 fstat6 fstat7 
2 R R R    fstat4/fstat7 fstat5/fstat7 fstat6/fstat7 fstat7 
3 F R R  fstat2/fstat6 fstat3/fstat6 fstat4/fstat7 fstat5/fstat7 fstat6 fstat7 
4 F F R fstat1/fstat5 fstat2/fstat6 fstat3 fstat4/fstat7 fstat5 fstat6 fstat7 
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FEAT finds the directory name and filename associated with the 4D input data. If 
the associated directory is writable by you then a related whatever.feat directory is 
created into which all FEAT output is saved. If not, the FEAT directory is created 
in your home directory. In either case, if the appropriately named FEAT directory 
already exists, a "+" is added before the .feat suffix to give a new FEAT directory 
name. (Of course, all the above gets ignored if you explicitly set the output 
directory name.)  

If you rerun Post-stats or Registration, you can choose (under the Misc tab) 
whether to overwrite the relevant files in the chosen FEAT directory or whether to 
make a complete copy of the FEAT directory and write out new results in there.  

All results get saved in the FEAT directory. 

 
 

• cluster_mask_zstat1.hdr image of clusters found for contrast 1; the 
values in the clusters are the index numbers as used in the cluster list.  

• cluster_zstat1.html / .txt the list of significant clusters for contrast 1. 
Note that the co-ordinates are the original voxel co-ordinates. (MEDx 
users: MEDx inverts y, so to use the y values in MEDx, use y_medx = 
y_size - 1 - y_feat where y_size is the size of the image in the y direction.)  

• cluster_zstat1_tal.html / .txt the same, but with co-ordinates given in 
Talairach space. This exists if registration to Talairach space has been 
carried out.  

• design.con list of contrasts requested.  
• design.fsf FEAT setup file, describing everything about the FEAT setup. 

This can be loaded into the FEAT GUI.  
• design.fts list of F-tests requested.  
• design.gif 2D image of the design matrix.  
• design.mat the actual values in the design matrix.  
• design.trg event onset times, created to be used in peri-stimulus timing 

plots.  
• design_cov.gif 2D image of the covariance matrix of the design matrix.  
• example_func.hdr the example functional image used for colour 

rendering, and also the one that was used as the target in motion 
correction. This is saved before any processing is carried out. This is also 
the image that is used in registration to structural and/or standard images.  

• example_func2highres.* files are related to the registration of the low 
res FMRI data to the high res image. The .xfm and .mat files are the 
transformation files in MEDx and raw format respectively. The .gif image 
includes several slices showing overlays of the two images combined after 
registration. (Note that the inverse of each transform file is also saved (e.g. 
highres2example_func.mat) to make it easy for you later to take standard 
or highres images back into the lowres space.)  

• example_func2standard.* files are related to the registration of the low 
res FMRI data to the standard image.  

• filtered_func_data.hdr the 4D FMRI data after all filtering has been 
carried out. (prefiltered_func_data.hdr is the output from motion 
correction and the input to filtering, and will not normally be saved in the 
FEAT directory.) Although filtered_func_data.hdr will normally have been 
temporally high-pass filtered, it is not zero mean; the mean value for each 
voxel's timecourse has been added back in for various practical reasons. 
When FILM begins the linear modelling, it starts by removing this mean.  

• highres.hdr is a symbolic link to the high res image.  
• highres2standard.* files are related to the registration of the high res 

image to the standard image.  
• lmax_zstat1.txt and _tal.txt are lists of local maxima within clusters 

found when thresholding.  
• mask.hdr the binary brain mask used at various stages in the analysis.  
• mc/prefiltered_func_data_mcf.par a text file containing the rotation 

and translation motion parameters estimated by MCFLIRT, with one rwo 
per volume.  
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• mc/mc_rot.gif, mc/mc_trans.gif plots showing these parameters as a 
function of volume number (i.e., time).  

• rendered_thresh_zstat1.png 2D colour rendered stats overlay picture for 
contrast 1.  

• rendered_thresh_zstat1.hdr 3D colour rendered stats overlay image for 
contrast 1. After reloading this image, use the Statistics Colour 
Rendering GUI to reload the colour look-up-table.  

• report.log a log of all the programs that the feat script ran (ie the same as 
report.log but without the log outputs).  

• report.html the web page FEAT report (see below).  
• report.log a log of the FEAT run, including all calls to FSL programs and 

their log outputs.  
• standard.hdr is a symbolic link to the standard image.  
• stats/contrastlogfile a logfile showing how well the statistics fit a 

Gaussian distribution, on the assumption of no activation.  
• stats/cope1.hdr the contrast of parameter estimates image for contrast 1.  
• stats/corrections a list of statistical corrections used within FILM 

modelling.  
• stats/dof the mean estimated degrees-of-freedom over the whole data set.  
• stats/neff1.hdr a statistical correction image for contrast 1.  
• stats/glslogfile a FILM run logfile.  
• stats/pe1.hdr the parameter estimate image for EV 1.  
• stats/probs a list of probabilities used for estimating Gaussian statistical 

fitting.  
• stats/ratios a list of estimates for Gaussian statistical fitting.  
• stats/sigmasquareds.hdr the 3D image summarising the residuals 

(errors) in the linear model fitting.  
• stats/smoothness the estimation of the smoothness of the 4D residuals 

field, used in inference.  
• stats/stats.txt another FILM logfile.  
• stats/threshac1.hdr The FILM autocorrelation parameters.  
• stats/tstat1.hdr the T statistic image for contrast 1 

(=cope/sqrt(varcope)).  
• stats/varcope1.hdr the variance (error) image for contrast 1.  
• stats/zstat1.hdr the Z statistic image for contrast 1  
• thresh_zstat1.hdr the thresholded Z statistic image for contrast 1.  

• tsplot/tsplot1.gif 2D picture of the model vs data plot for the maximum 
Z statistic voxel from contrast 1.  

• tsplot/tsplot1.txt text file of values of the model vs data plot for the 
maximum Z statistic voxel from contrast 1. The first column is the data, 
the second column is the partial model fit for contrast 1, the third column 
is the full model fit and the fourth column is the reduced data for contrast 
1 (see below).  

• tsplot/tsplotc1.gif 2D picture of the model vs data plot averaged over all 
voxels in all significant clusters for contrast 1.  

• tsplot/tsplotc1.gif text file of values of the model vs data plot averaged 
over all voxels in all significant clusters for contrast 1.  

• tsplot/tsplot1p.gif / tsplot/tsplotc1p.gif plots of reduced data vs cope 
partial model fit - i.e. data-full_model+partial_model vs partial_model.  

If you have run F-tests as well as T-tests then there will also be many other files 
produced by FEAT, with filenames similar to those above, but with zfstat 
appearing in the filename.  

The web page report includes the motion correction plots, the 2D colour 
rendered stats overlay picture for each contrast, the data vs model plots, 
registration overlay results and a description of the analysis carried out.  
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A second-level .gfeat directory contains one 4D cope*.hdr for each of the first-
level contrasts; these are simply the concatenation (across the first-level analyses) of 
those first-level cope images (in standard space) - ie the 4th dimension here is the 
number of first-level analyses. This is the input to the second-level analysis.  

After the second-level analysis has completed each of those 4D cope*.hdr files in 
the .gfeat directory will have resulted in a .feat second-level output, containing all 
analysis steps (and of course, second-level output copes).  
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• Feat - the FEAT GUI, as described above.  

• feat - the FEAT script which the GUI calls when the setup has been 
completed and GO is pressed. If you have saved a FEAT setup file (eg 
design.fsf) to file, then you can run FEAT without the GUI by typing feat 
<featsetupfile.fsf>.  

• easythresh - a simple script for carrying out cluster-based thresholding 
and colour activation overlaying.  

• featregapply - a program which applies the lowres to standard-space 
registration transforms to the lowres stats images in a FEAT directory to 
generate standard-space versions, for inputting to higher-level analysis.  

• Featquery (GUI) and featquery (command-line script) - a program which 
allows you to interrogate FEAT results by defining a mask or set of co-

ordinates (in standard-space, highres-space or loweres-space) and get mean 
stats values and time-series.  

• Featwatcher (GUI) - a simple GUI that presents the progress of a FEAT 
analysis. 

• feat_model - a program which uses the FEAT setup file to create the 
required design matrix as a text file, as well as the related design matrix 
pictures.  

• mccutup - convert the estimates of motion saved in a FEAT directory to 
separate files which can then be fed into FEAT as Custom (1 entry per 
volume) EVs.  

• Renderhighres (GUI) and renderhighres (command-line script) - 
transforms all thresholded stats images in a FEAT directory into high 
resolution or standard space and overlays these onto the high resolution or 
standard space images. This then produces PNG format pictures of the 
overlays and, by default, deletes the 3D AVW colour overlay images.  

• tsplot - create time series plots for a FEAT directory.  
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General Linear Modelling (more correctly known simply as "linear modelling") sets 
up a model (i.e., what you expect to see in the data) and fits it to the data. If the 
model is derived from the stimulation that was applied to the subject in the MRI 
scanner, then a good fit between the model and the data means that the data was 
indeed caused by the stimulation.  

The GLM used here is univariate. This means that the model is fit to each voxel's 
time-course separately. (Multivariate would mean that a much more complex 
analysis would take place on all voxels' time-courses at the same time, and 
interactions between voxels would be taken into account. Independent 
Components Analysis - ICA - is an example of multivariate analysis.) For the rest 
of this section, you can imagine that we are only talking about one voxel, and the 
fitting of the model to that voxel's timecourse. Thus the data comprises a single 1D 
vector of intensity values.  

A very simple example of linear modelling is y(t)=a*x(t)+b+e(t). y(t) is the 
data, and is a 1D vector of intensity values - one for each time point, i.e., is a 
function of time. x(t) is the model, and is also a 1D vector with one value for each 
time point. In the case of a square-wave block design, x(t) might be a series of 1s 
and 0s - for example, 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 etc. a is the parameter estimate 
for x(t), i.e., the value that the square wave (of height 1) must be multiplied by to 
fit the square wave component in the data. b is a constant, and in this example, 
would correspond to the baseline (rest) intensity value in the data. e is the error in 
the model fitting.  

If there are two types of stimulus, the model would be y=a1*x1+a2*x2+b+e. 
Thus there are now two different model waveforms, corresponding to the two 
stimulus timecourses. There are also two interesting parameters to estimate, a1 and 
a2. Thus if a particular voxel reponds strongly to model x1 the model-fitting will 
find a large value for a1; if the data instead looks more like the second model 
timecourse, x2, then the model-fitting will give a2 a large value.  

 
 
GLM is normally formulated in matrix notation. Thus all of the parameters are 
grouped together into a vector A, and all of the model timecourses are grouped 
together into a matrix X. However, it isn't too important to follow the matrix 
notation, except to understand the layout of the design matrix, which is the matrix 
X. The main part of the image shown here contains two such model timecourses. 
Each column is a different model timecourse, with time going down the image 
vertically. Thus the left column is x1, for example, the timecourse associated with 
visual stimulation, and the right column is x2, e.g., auditory stimulation, which has 
a different timecourse to the visual stimulation. Note that each column has two 
representations of the model's value - the black->white intensity shows the value, 
as does the red line plot. Make sure that you are comfortable with both 
representations.  

When the model is fit to the data, for each voxel there will be found an estimate 
of the "goodness of fit" of each column in the model, to that voxel's timecourse. In 
the visual cortex, the first column will generate a high first parameter estimate, and 
the second column will generate a low second parameter estimate, as this part of 
the model will not fit the voxel's timecourse well. Each column will be known as an 
explanatory variable (EV), and in general represents a different stimulus type.  

To convert estimates of parameter estimates (PEs) into statistical maps, it is 
necessary to divide the actual PE value by the error in the estimate of this PE 
value. This results in a t value. If the PE is low relative to its estimated error, the fit 
is not significant. Thus t is a good measure of whether we can believe the estimate 
of the PE value. All of this is done separately for each voxel. To convert a t value 
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into a P (probability) or Z statistic requires standard statistical transformations; 
however, t, P and Z all contain the same information - they tell you how 
significantly the data is related to a particular EV (part of the model). Z is a 
"Gaussianised t", which means that a Z statistic of 2 is 2 standard deviations away 
from zero.  

As well as producing images of Z values which tell you how strongly each voxel 
is related to each EV (one image per EV), you can compare parameter estimates to 
see if one EV is more "relevant" to the data than another. This is known as 
contrasting EVs, or producing contrasts. To do this, one PE is subtracted from 
another, a combined standard error is calculated, and a new Z image is created. All 
of the above is controlled by you, by setting up contrasts. Each output Z statistic 
image is generated by setting up a contrast vector; thus set the number of outputs 
that you want. To convert a single EV into a Z statistic image, set it's contrast value 
to 1 and all others to 0. Thus the simplest design, with one EV only, has just one 
contrast vector, and only one entry in this contrast vector: 1. To compare two EVs, 
for example, to subtract one stimulus type (EV 1) from another type (EV 2), set 
EV 1's contrast value to -1 and EV 2's to 1. A Z statistic image will be generated 
according to this request, answering the question "where is the response to 
stimulus 2 significantly greater than the response to stimulus 1?"  

The bottom part of the above image shows the requested contrasts; each column 
refers to the weighting of the relevant EV (often either just 1, 0 or -1), and each 
row is a different contrast vector. Thus each row will result in it's own Z statistic 
image. Here the contrasts are [1 0] and [0 1]. Thus the first Z stat image produced 
will show response to stimulus type 1, relative to rest, and the second will show the 
response to stimulus type 2.  

 
If you want to model nonlinear interactions between two EVs (for example, when 
you expect the response to two different stimuli when applied simultaneously to 
give a greater response than predicted by adding up the responses to the stimuli 
when applied separately), then an extra EV is necessary. The simplest way of doing 
this is to setup the two originals EVs, and then add an interaction term, which will 
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only be "up" when both of the original EVs are "up", and "down" otherwise. In 
the example image, EV 1 could represent the application of drug, and EV 2 could 
represent visual stimulation. EV 3 will model the extent to which drug+visual is 
greater than the sum of drug-only and visual-only. The third contrast will show this 
measure, whilst the fourth contrast [0 0 -1] shows where negative interaction is 
occurring.  

All of the EVs have to be independent of each other. This means that no EV can 
be a sum (or weighted sum) of other EVs in the design. The reason for this is that 
the maths which are used to fit the model to the data does not work properly 
unless the design matrix is of "full rank", i.e. all EVs are independent. A common 
mistake is to model both rest and activation waveforms, making one an upside-
down version of the other; in this case EV 2 is -1 times EV 1, and therefore 
linearly dependent on it. It is only necessary to model the activation waveform.  

With "parametric designs", there might be several different levels of stimulation, 
and you probably want to find the response to each level separately. Thus you 
should use a separate EV for each stimulation level. (If, however, you are very 
confident that you know the form of the response, and are not interested in 
confirming this, then you can create a custom waveform which will match the 
different stimulation levels, and only use one EV.) If you want to create different 
contrasts to ask different questions about these responses, then: [1 0 0] shows the 
response of level 1 versus rest (likewise [0 1 0] for level 2 vs rest and [0 0 1] for 
level 3). [-1 1 0] shows where the response to level 2 is greater than that for level 1. 
[-1 0 1] shows the general linear increase across all three levels. [1 -2 1] shows 
where the increase across all three levels deviates from being linear (this is derived 
from (l3-l2)-(l2-l1)=l3-2*l2+l1).  

Thus there often exists a natural hierarchy in contrast vectors. In the above 
example, [1 1 1] shows overall activation, [-1 0 1] shows linear increase in activation 
and [1 -2 1] shows (quadratic) deviation from the linear trend. Note that each 
contrast is orthogonal to the others (e.g. -1*1 + 0*1 + 1*1 = 0) - this is important 
as it means that each is independent of the others. A common mistake might be, 
for example, to model the linear trend with [1 2 3], which is wrong as it mixes the 
average activation with the linear increase.  
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This section describes the rules which are followed in order to take the FEAT 
setup and produce a design matrix, for use in the FILM GLM processing.  

Here HTR model means "high temporal resolution" model - a time series of 
values that is used temporarily to create a model and apply the relevant HRF 
convolution before resampling down in time to match the temporal sampling of 
the FMRI data.  

Note that it is assumed that every voxel was captured instantaneously in time, 
and at the same time, exactly halfway through a volume's time period, not at the 
beginning. This minimises timing errors, if slice-timing correction has not been 
applied.  

No constant column is added to the model - instead, each EV is demeaned, and 
each voxel's time-course is demeaned before the GLM is applied.  
 
for each EV 
( 
  if ( square waveform ) 
    fill HTR model with 0s or 1s 
  else if ( sinusoidal waveform ) 
    fill HTR model with sinusoid scaled to lie in the range 0:1 
  else if ( custom waveform ) 
    fill HTR model with custom information, with 0s outside of 
    specified periods 
 
  demean HTR 
 
  create "triggers" i.e. record the start and end of event or block 
 
  create blurring+delaying HTR HRF convolution kernel, normalised so 
  that the sum of values is 1 (in the case of basis functions, several 
  related kernels are created) 
 
  convolve HTR model with HRF convolution kernel (values in HTR model 
  for t<0 are set to 0 to allow simple convolution) 
     OR 
  in the case of sinusoidal original waveform; create harmonics (if 
  requested) 
 
  subsample HTR model to match the temporal resolution of the data; 
  take the value in the centre of each volume's time period 
 
  apply the same high-pass temporal filtering that was applied to the 
  data 
 
  re-demean 
 



22 

  orthogonalise current EV wrt earlier EVs if requested (form 
  temporary matrix from selected EVs, carry out SVD, and subtract 
  projection of current EV onto each vector in SVD output) 
 
  instead of all the above - if this EV is an "interaction" (nonlinear 
  interaction between other EVs); 
    model = PRODUCT(other EVs, after subtracting the min value from each) 
 
  if requested, create a new EV, calculated as the temporal derivative 
  of the current EV 
 
  re-demean (again!) 
) 
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Featquery is a script which allows you to interrogate FEAT results by defining a 
mask (or co-ordinates of a single-voxel) in standard-space, highres-space or lowres-
space, to get mean, max etc stats values and time-series within that mask or at that 
voxel position. For example, you might define a standard-space mask for the motor 
cortex, and Featquery will tell you the mean (and peak) % signal change associated 
with your modelled experimental paradigm within that area.  

First you must select a previously-created FEAT output directory whose results 
you wish to investigate. You can run multiple queries by changing the Number of 
FEAT directories. The results of running Featquery will be saved in a directory 
("featquery") inside each FEAT directory chosen. If you have already run 
Featquery on a FEAT directory, a "+" will be appended to the subdirectory name, 
e.g. "featquery+".  
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Once you have selected a FEAT directory, a list of all possibly interesting stats 
images inside that FEAT directory will appear on the Featquery GUI. Turn on the 
ones you are interested in. (If you turn on filtered_func_data you will be given 
mean (and max etc) stats values within the defined mask, including searching over 
time as well as space.)  

If you select Convert PE/COPE values to %, any PE or COPE parameter 
estimate or contrast values will be converted to percentage change values before 
reporting. This is achieved by dividing the PE/COPE values by the mean image 
from filtered_func_data. Warning: this % is based on the assumption that the 
"height" of the model waveform is 1, which in general it is for FEAT-created block 
designs, but in general is not for event-related designs or custom waveforms. In 
order to get a true % change value you must multiply the output by the height of 
the relevant model waveform (see the design.mat file). In the case of contrasts 
(COPEs), the interpretation of this % needs even more careful thought.  

"������������'��/�����
���������������
You must now choose a Mask image. This would normally be a binary image in 
standard-space, highres-space or lowres-space, with a region-of-interest (ROI), for 
example, the visual cortex, created by any method. Featquery will automatically 

detect which space this mask is in (ie standard-space, highres-space or lowres-
space) and will transform it into the native lowres space of example_func; of 
course this can only work if FEAT registration was setup and carried out.  

If you want a different mask for each selected FEAT directory, specify a mask 
name as a relative filename (ie without a "/"). This mask will then be looked for 
relative to each FEAT directory.  

Alternatively, you can specify a single position (in voxels or mm) at which to 
extract values from the chosen stats images. This still requires a "mask" image to be 
chosen, as it is relative to this mask image that the co-ordinates have meaning. 
Thus if you want the co-ordinates to be in lowres space, just select "mask" or 
"example_func"; if you want to specify standard-space co-ordinates ("Talairach 
space") then choose "reg/standard". It is wise to be careful here - after running 
Featquery, have a look at the created featquery/mask image to check that the voxel 
finally chosen is in a sensible place!  
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If you want to only allow stats values above a threshold to enter into the 
calculations (of mean, max etc) then turn on Apply threshold and select a value.  

If you have selected a mask image in standard or highres space, this will get 
transformed into lowres space as described above. This involves interpolation; at 
the edges of the mask there will be a continuous range of values from 1 down to 0. 
In order to get back to a binary mask, this must be thresholded at some value - the 
default is 0.5. However, if you want the mask to be slightly more or less inclusive 
than that default, you can Change mask post-interpolation thresholding - for 
example, by reducing the value to 0.3, the final lowres mask will be slightly larger.  

)��
When you press Go, Featquery produces all the requested stats values including 
mean, min, max and position of max. These get logged to the file report.txt inside 
the featquery subdirectory inside the FEAT directory, and also copied to the 
screen. Also, various timeseries textfiles are saved; one for the mean timeseries 
over the mask, and also one for each of the positions of the max value of each of 
the stats images. 
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Featwatcher is a simple GUI that presents the progress of a FEAT analysis. When 
you start FEAT running with the Go button, it automatically brings up the 
Featwatcher GUI. At the top is the name of the FEAT output directory; under that 
is a small panel which shows some running statistics on the currently running 
FEAT sub-process - %CPU usage, total CPU time so far and memory usage. In the 
large panel is shown the report.log file which lists all commands run by FEAT, 
along with their output. 

You can also run Featwatcher <feat_directory_name.feat> from the 
command line, to view the progress in an existing running FEAT directory. 

Note that FEAT still keeps running if you exit Featwatcher or the FEAT GUI, 
and even, in general, if you completely log out of your computer. 
 


