
gbutils overview

Giulio Bottazzi

December 27, 2014

Contents

1 Brief description of programs 1
1.1 Data Manipulation . 2
1.2 Data transformation . 3
1.3 Descriptive statistics . 3
1.4 Statistical tests and models 4

2 Understanding Input/Output 5
2.1 Sequential, tabular and compounded input 5
2.2 Missing values and NaN management 6
2.3 Radix and thousands separator 7
2.4 Output format and precision 7

3 Numerical Error handling 8

4 Binary format 8

5 Graphic output 9
5.1 GNU plotutils package . 9
5.2 Gnuplot interactive session . 9
5.3 Gnuplot's plot from command line 9

6 Programs summary table 11

1 Brief description of programs

The programs in gbutils can be divided in four broad classes:

� Data Manipulation

1

� Data Transformation

� Descriptive Statistics

� Statistical Tests and Models

The basic operation is essentially the same for all programs: you feed
the standard input of the program with data in ASCII format separated by
spaces, tabs or newline character. In general, each input line is considered a
record and the blank separated entries in each line are considered di�erent
�elds. The exact way in which di�erent records and �elds are treated depends
on the program and can vary accordingly to the options speci�ed in the
command line (see below).

After the program has read the data from standard input, it performs the
required manipulations/analyses and prints the result to standard output,
in the form of an ASCII �le of newline separated records. Inside each output
record, the �elds are separated by spaces. Obviously, the meaning of the
records and �elds depend on the program.

1.1 Data Manipulation

These programs do not perform any analysis by themselves. Rather, they are
provided as an help to prepare data for subsequent analysis. In particular,
gbget is the only program that reads data from �le and not from standard
input. It can be used to extract data, according to a given pattern, from
one or more �les and send them, through a pipe |, to other utilities. This
program possesses a rather complex set of options. See README.gbget for
a tutorial on its use.

gbget extract data from a tabular input according to a speci�ed pattern. It
is possible to access more �les at the same time, merge their contents
and transpose or �atten the resulting table.

gbfun compute generic functions on data in a column-wise manner. The
function can be applied to all the columns or de�ned in a recursive
way.

gbgrid generate a grid (i.e. a matrix) of values according to a user speci�ed
function

gbboot generate bootstrapped sequences from data provided sample

gbrand generated i.i.d. pseudo random variates

2

gbenv provide information about the numeric environment and the internal
settings of the package

1.2 Data transformation

These programs perform basic transformation on input data, which are often
considered preliminary to further statistical analysis.

gbmave print moving statistics (average, variance, etc.) of input data

gbinterp compute the interpolation on a regular mesh of user provided
points. It can also print �rst and second derivative of the interpolation.

gb�lternear �lter near points in Ecuclidean metrics. Point whose distance
is below a given threshold are removed.

1.3 Descriptive statistics

These utilities are useful in the representation and description of data. They
encompass simple statistics and more "advanced" non parametric methods.

gbdist cumulative distribution of input data

gbstat simple descriptive statistics of input data

gbbin compute binned statistics

gbquant quantiles of the empirical distribution of input data

gbhisto histogram for univariate data. Choose between absolute frequen-
cies, relative frequencies and empirical density

gbker kernel density estimate for univariate data. The type of kernel, the
bandwidth and the computation method can be speci�ed at the com-
mand line

gbnear density estimate via nearest neighbors method

gbker2d kernel density estimate for bivariate data

gbhisto2d histograms for bivariate data

gbgcorr Compute the correlation dimension of a time series with a Gaussian
kernel.

3

gbacorr It computes the autocorrelogram or the cross-autocorrelogram of
a series of observations. It reads the data column-wise.

gbxcorr Compute the cross-covariance and cross-correlation coe�cients
with and without the removal of the mean of two samples. It reads the
data column-wise.

1.4 Statistical tests and models

The utilities provide statistical tests to compare di�erent samples and non-
parametric method to investigate relationship between paired (or in general
compounded) observations.

gbtest various one and two samples statistical tests. When available, p-
score signi�cance is also provided.

gbmodes �nd the critical bandwidth for a kernel density estimate to gener-
ate a given number of modes and compute the associated p-value using
smoothed bootstrap technique

gbbin the program takes couples of values X Y (separated by spaces), bins
them with respect to the �rst variable and prints statistics of the second
variables

gbkreg compute the kernel non-linear regression function

gbkreg2d compute the kernel non-linear regression function on three di-
mensional data

gblreg compute linear OLS regression

gbglreg compute generalized linear OLS regression

gbnlreg compute non linear regression using OLS, MAD or asymmetric
MAD estimators

gbnlqreg compute non linear quantile regression

gbnlmult contemporaneous least square estimation of a system of non lin-
ear equations.

gbnlprobit estimate a non linear probit model on binary data

gbhill estimate di�erent families of probability distribution on the extremal
data using maximum likelihood.

4

For more information on a speci�c command, use the -h command line
option.

Please, notice that all the programs work by loading the whole set of
data in memory before computing the relevant statistics. In this respect,
they are probably not suitable to be used on very large datasets.

2 Understanding Input/Output

All the commands of this package read input in ASCII format. The data
should be separated by white characters (spaces or tabs) or newlines. Lines
beginning with a fence symbol # are ignored. They are simply skipped by
the input routine.

If support for the zlib has been included at compile time (see above) the
input ASCII �le can be gz-compressed.

A �le can contain several blocks of data. Blocks are separated by two
consecutive blank lines. In general, all operations are performed on the �rst
block found in the data�le. The program 'gbget' can be used to extract one
particular block (or set of blocks) from one �le.

2.1 Sequential, tabular and compounded input

The utilities in this package use three di�erent ways of reading data from
input:

sequential In 'sequential' format a single dataset is internally build from
the data input �le. All the entries found on one column of input
are read sequentially and put in the same dataset. Notice that the
di�erent lines must contain the same number of entries or NAN values
are generated.

tabular In 'tabular' format, each column of the input is treated as a di�erent
dataset; the program will internally create a list of datasets, one for
each column of input. The di�erent entries on one line are then put
inside di�erent sets. Notice that, in this case, the number of �elds in
the �rst non-comment non-empty line decides the number of datasets.
All subsequent input lines should contain the same number of �elds
(but see below).

compounded In 'compounded' format the program reads a �xed number
of �elds from each line. Each line is internally stored as an n-tuple (a

5

couple or a triplet) and treated accordingly. Notice that if some line
contains more �elds than needed, the extra �elds are ignored.

An example can clarify the di�erence between the 'sequential', 'tabular'
and 'compounded' format. Suppose to have the following input data�le

1.0 2.0 3.0

4.0 5.0 6.0

7.0 8.0 9.0

using the 'sequential' input the unique dataset {1.0,2.0,3.0,4.0,...,9.0}
is internally generated by the program. Notice the ordering: all the entries
of one line are inserted in the internal dataset before the next line is red.

In 'tabular' format, the program builds instead three di�erent datasets:
{1.0,4.0,7.0}, {2.0,5.0,8.0} and {3.0,6.0,9.0} and use each set sep-
arately for its subsequent duties (topically reproducing the same statistical
analysis for each set).

In 'compounded' format, assuming that the program accepts couples, the
following array of ordered couples is generated {(1.0,2.0),(4.0,5.0),(7.0,8.0)}.
Notice that this is a single dataset, made of couples of associated values.

When available, the "sequential" format is the default while the "tabular"
format is activated with the option '-t'. See the 6 for the list of input format
accepted by the di�erent utilities.

2.2 Missing values and NaN management

When the conversion of an input entry to an internal �oating point number
cannot be performed, or when, on an input line, there are not enough values
for the required "tabular" or "compounded" format, a NAN (not-a-number)
value is generated. This approach is introduced to make possible the ma-
nipulation of �les with an uneven number of entries in di�erent columns or
with "non numerical" values.

The following utilities automatically remove the NaN values from their
input: gbstat, gbdist and gbquant.

The other utilities do handle NaN values as expected: if NaN values are
present they typically return NaN output. In this case, the option D of the
gbget utility is provided to remove all the lines containing NaN entries. This
program can be used in a pipe like

...| gbget '()D' |

to treat the data before passing them to other NaN-sensitive utilities.

6

2.3 Radix and thousands separator

In addition to the radix symbol which separates the fractional and the integer
part of the number, sometimes data are reported with a thousand separator
symbol. For instance "one million" could be written "1,000,000.00". The
character used to separate thousands and the fractional part are de�ned
inside the C locale. Programs in the gbutils package can automatically rec-
ognize the locale settings and process these entries accordingly. Please use
"gbenv" to see the de�nitions in use. Changing the locale typically amount
simply to the rede�nition of the LANG environment variable

export LANG="en_US"

A list of the available locale can be obtained with the locale program

locale -a

and the actual setting veri�ed with

locale

For more details refer to the locale documentation.

2.4 Output format and precision

In general, the output from the di�erent programs is made of newline sepa-
rated records of space separated �elds of standard ASCII characters, which
represent �oating point numbers. The default format is scienti�c notation
with a precision of six digits. The format and the precision can be changed
using the environment variable GB_OUT_FLOAT_FORMAT. This variable can be
set to any printf (the standard library C function) meaningful string. For
instance with

export GB_OUT_FLOAT_FORMAT="%.8e"

the precision is extended to eight digit. While with

export GB_OUT_FLOAT_FORMAT="%.fe"

the scienti�c notation is replaced with a �xed-point notation. Please,
refer to the printf documentation for further details.

There is also a second variable, GB_OUT_EMPTY_FORMAT, which can be
used to tune the comment headings that many programs generate with the
verbose option -v. Notice that it is automatically set to a value which is
consistent with the �oat format chosen, so in general it is a good idea not to
change it explicitly.

7

3 Numerical Error handling

The default behaviour of Gnu Scienti�c Library functions is to abort the
execution of the program if a numeric error is produced. Some of these
errors, especially under�ow errors, are tolerable inside a computation. The
'gbutils' package provides a way of switching o� the GSL error handling. It
is su�cient to set the environment variable GB_ERROR_HANDLER_OFF using

export GB_ERROR_HANDLER_OFF=

and all the programs will ignore numerical errors. This feature must be
used carefully, after checking that the loss of precision implied by the presence
of these errors can be considered tolerable for the actual computation one
wants to perform. The default behaviour can be recovered using

unset GB_ERROR_HANDLER_OFF

4 Binary format

THIS IS AN EXPERIMENTAL FEATURE

Like ASCII �les, the binary �les are structured as sequences of separate
blocks. Each block is made of

� one size_t with number of columns C

� C size_t with the length of the rows, R1 . . . RC

� the data stored sequentially column by column, for a total number
equal to R1+R2+. . .+RC

This structure allows the storage of non matrices structures in binary
format. If lengths are di�erent, the missing values are replaced with NANs.
This mimic the behaviour of ASCII data handling.

Notice that blocks are simply written one after the other. No particular
separators are inserted between them.

Implementation: the option -b rede�nes the function used to read and/or
write data.

This feature has been implemented for gbget, gbmstat and gbfun.

8

5 Graphic output

As previously mentioned, the output of many programs in the gbutils pack-
age, like gbhisto or gbker, is intended to be plotted and not directly read
from the terminal. It is generally composed of records and �elds of standard
ASCII characters. This type of output can be displayed using the various
plotting utilities commonly available in Unix systems. We shortly review
below three possibilities.

5.1 GNU plotutils package

The plotutils package can be found here. It contains the program graph

which generate a plot starting from input data. For example to obtain a
plot of the kernel density of the data in �le datafile.dat one can use

gbker < datafile.dat | graph -T x

where -T x choose an xwindow as output device.

5.2 Gnuplot interactive session

An alternative is to use the powerful plotting environment provided by gnu-
plot. The program can be found here.

From inside a gnuplot session, the previous kernel density can be obtained
with

plot "< gbker < datafile.dat "

see Gnuplot documentations for details.

5.3 Gnuplot's plot from command line

As the example above shows, in order to directly plot the output of a com-
mand, inside gnuplot you need to put it inside a special string delimited by
~"<~ and ~"~. Moreover, all double quotes symbols ~"~ have to be escaped.
These requirements can lead to cumbersome expressions when complicated
commands are necessary. In any case, starting an interactive gnuplot session
and writing the expression whose output should be plotted doesn't seem so
attractive when one needs fast, simple plotting, for exploratory purposes.
For these case the command gbplot is provided. This is a shell script that
accept the data to be plotted as input and the directive on how to plot it on
the command line.

The basic usage is as follows

9

http://www.gnu.org/software/plotutils/
http://www.gnuplot.info/

gbplot [options] [plot|splot] <plotting options> < datafile

or

command pipe | gbplot [options] [plot|splot] <plotting options>

The command plot or splot are required. One can provide further
plotting options by inserting them after these command. For example one
can plot the kernel density estimate using

gbker < datafile.dat | gbplot plot

In this way the density is plotted using simple points. To use the fancier
gnuplot's 'histeps' style use instead

gbker < datafile.dat | gbplot plot with histeps

The syntax of the plotting options is exactly the same that would be
used inside gnuplot, after a the plot or splot command. For instance to
specify a range for the x values use

gbker < datafile.dat | gbplot plot '[-1:1]' with histeps

It is also possible to obtain multiple plots of the data using the gnuplot
special �le name '""', as in

gbker < datafile.dat | gbplot plot 'w p , "" w l'

This command draws the kernel estimate two times: the �rst with points,
the second with a line (as speci�ed by the w l expression).

gbplot also possesses several options. They must be speci�ed before the
plot or splot command. To insert a title in the plot use the option -t

gbker < datafile.dat | gbplot -t Title plot with histeps

Terminal type and output �le can be speci�ed with the -T and -o options
respectively. The command

gbker < datafile.dat | gbplot -T pdf -o output.pdf plot with histeps

produce a pdf version fo the plot and save it in 'output.pdf'.
Finally, if an interactive manipulation of plot parameters or data is re-

quired, you can use the option -i. This option opens an interactive gnuplot
session, allowing for direct manipulation of plot settings and parameters

gbker < datafile.dat | gbplot -i plot with histeps

Once the session is closed, the output is saved in a �le using a speci�c
terminal if options -o and -T have been speci�ed.

10

6 Programs summary table

Name Input Type External lib NAN

gbget c+ (matheval) *
gbfun c+ matheval
gbgrid no matheval
gbrand no gsl
gbboot s,t,c+ (gsl)
gbenv no
gbmave s,t *
gbinterp c,2 gsl
gb�lternear c+
gbdist s,t *
gbstat s,t *
gbquant s,t,c+ *
gbhisto s,t
gbker s gsl
gbnear s
gbhisto2d c2
gbgcorr s
gbacorr c1,c2
gbxcorr c2
gbker2d c2
gbbin c+
gbtest c+ (gsl) *
gbmodes s gsl
gbbin t
gbkreg c2 gsl
gbkreg2d c3
gblreg c2 gsl
gbglreg c+ gsl
gbnlreg c+ gsl,matheval
gbnlqreg c+ gsl,matheval
gbhill s gsl
gbnlmult c+ gsl,matheval
gbnlprobit c+ gsl,matheval
gbnlpanel c+ gsl,matheval *
gbnlpolyit c+ gsl,matheval

Input Type: 's' sequential; 't' tabular; 'c' compounded c2 read couples,

11

c3 triplets, c+ a variable number of columns; 'no' no input required
External libs: gsl: Gnu Scienti�c Library matheval: GNU matheval

library () means optional dependence (special features are available only if
the library is found)

NAN: program automatically ignores NAN values in computations

12

	Brief description of programs
	Data Manipulation
	Data transformation
	Descriptive statistics
	Statistical tests and models

	Understanding Input/Output
	Sequential, tabular and compounded input
	Missing values and NaN management
	Radix and thousands separator
	Output format and precision

	Numerical Error handling
	Binary format
	Graphic output
	GNU plotutils package
	Gnuplot interactive session
	Gnuplot's plot from command line

	Programs summary table

