My Project
|
Determines the phase compositions, pressures and saturations given the total mass of all components. More...
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/version.hh>
#include <limits>
#include <iostream>
Go to the source code of this file.
Classes | |
class | Opm::NcpFlash< Scalar, FluidSystem > |
Determines the phase compositions, pressures and saturations given the total mass of all components. More... | |
Determines the phase compositions, pressures and saturations given the total mass of all components.
In a M-phase, N-component context, we have the following unknowns:
This sums up to M*(N + 2). On the equations side of things, we have:
This also sums up to M*(N + 2).
The following assumptions apply: Capillary pressures are taken into account explicitly, so only the pressure of the first phase is implicitly solved for. Also, the closure condition for the saturations is taken into account explicitly, i.e., we don't need to implicitly solve for the last saturation. These two assumptions reduce the number of unknowns to the following M*(N + 1):