27 #ifndef OPM_BRINE_CO2_PVT_HPP
28 #define OPM_BRINE_CO2_PVT_HPP
39 #include <opm/material/components/co2tables.inc>
43 #include <opm/input/eclipse/EclipseState/EclipseState.hpp>
44 #include <opm/input/eclipse/Schedule/Schedule.hpp>
45 #include <opm/input/eclipse/EclipseState/Tables/TableManager.hpp>
55 template <
class Scalar>
58 static constexpr
bool extrapolate =
true;
77 BrineCo2Pvt(
const std::vector<Scalar>& brineReferenceDensity,
78 const std::vector<Scalar>& co2ReferenceDensity,
79 const std::vector<Scalar>& salinity)
80 : brineReferenceDensity_(brineReferenceDensity),
81 co2ReferenceDensity_(co2ReferenceDensity),
88 Scalar T_ref = 288.71,
89 Scalar P_ref = 101325)
92 int num_regions = salinity_.size();
93 co2ReferenceDensity_.resize(num_regions);
94 brineReferenceDensity_.resize(num_regions);
96 for (
int i = 0; i < num_regions; ++i) {
106 void initFromState(
const EclipseState& eclState,
const Schedule&)
108 if( !eclState.getTableManager().getDensityTable().empty()) {
109 std::cerr <<
"WARNING: CO2STOR is enabled but DENSITY is in the deck. \n" <<
110 "The surface density is computed based on CO2-BRINE PVT at standard conditions (STCOND) and DENSITY is ignored " << std::endl;
113 if( eclState.getTableManager().hasTables(
"PVDO") || !eclState.getTableManager().getPvtoTables().empty()) {
114 std::cerr <<
"WARNING: CO2STOR is enabled but PVDO or PVTO is in the deck. \n" <<
115 "BRINE PVT properties are computed based on the Hu et al. pvt model and PVDO/PVTO input is ignored. " << std::endl;
123 size_t regionIdx = 0;
125 const Scalar molality = eclState.getTableManager().salinity();
126 const Scalar MmNaCl = 58e-3;
131 Scalar T_ref = eclState.getTableManager().stCond().temperature;
132 Scalar P_ref = eclState.getTableManager().stCond().pressure;
135 co2ReferenceDensity_[regionIdx] =
CO2::gasDensity(T_ref, P_ref, extrapolate);
155 brineReferenceDensity_[regionIdx] = rhoRefBrine;
156 co2ReferenceDensity_[regionIdx] = rhoRefCO2;
175 { enableDissolution_ = yesno; }
181 {
return brineReferenceDensity_.size(); }
186 template <
class Evaluation>
188 const Evaluation& temperature,
189 const Evaluation& pressure,
190 const Evaluation& Rs)
const
193 const Evaluation xlCO2 = convertXoGToxoG_(convertRsToXoG_(Rs,regionIdx));
194 return (liquidEnthalpyBrineCO2_(temperature,
196 salinity_[regionIdx],
198 - pressure / density_(regionIdx, temperature, pressure, Rs));
204 template <
class Evaluation>
206 const Evaluation& temperature,
207 const Evaluation& pressure,
208 const Evaluation& )
const
217 template <
class Evaluation>
219 const Evaluation& temperature,
220 const Evaluation& pressure)
const
228 template <
class Evaluation>
230 const Evaluation& temperature,
231 const Evaluation& pressure,
232 const Evaluation& Rs)
const
234 return (1.0 - convertRsToXoG_(Rs,regionIdx)) * density_(regionIdx, temperature, pressure, Rs)/brineReferenceDensity_[regionIdx];
240 template <
class Evaluation>
242 const Evaluation& temperature,
243 const Evaluation& pressure)
const
245 Evaluation rsSat = rsSat_(regionIdx, temperature, pressure);
246 return (1.0 - convertRsToXoG_(rsSat,regionIdx)) * density_(regionIdx, temperature, pressure, rsSat)/brineReferenceDensity_[regionIdx];
255 template <
class Evaluation>
258 const Evaluation& )
const
260 throw std::runtime_error(
"Requested the saturation pressure for the brine-co2 pvt module. Not yet implemented.");
266 template <
class Evaluation>
268 const Evaluation& temperature,
269 const Evaluation& pressure,
271 const Evaluation& )
const
274 return rsSat_(regionIdx, temperature, pressure);
280 template <
class Evaluation>
282 const Evaluation& temperature,
283 const Evaluation& pressure)
const
285 return rsSat_(regionIdx, temperature, pressure);
288 const Scalar oilReferenceDensity(
unsigned regionIdx)
const
289 {
return brineReferenceDensity_[regionIdx]; }
291 const Scalar gasReferenceDensity(
unsigned regionIdx)
const
292 {
return co2ReferenceDensity_[regionIdx]; }
294 const Scalar salinity(
unsigned regionIdx)
const
295 {
return salinity_[regionIdx]; }
297 bool operator==(
const BrineCo2Pvt<Scalar>& data)
const
299 return co2ReferenceDensity_ == data.co2ReferenceDensity_ &&
300 brineReferenceDensity_ == data.brineReferenceDensity_;
303 template <
class Evaluation>
304 Evaluation diffusionCoefficient(
const Evaluation& temperature,
305 const Evaluation& pressure,
309 const Evaluation log_D_H20 = -4.1764 + 712.52 / temperature - 2.5907e5 / (temperature*temperature);
314 const Evaluation log_D_Brine = log_D_H20 - 0.87*log10(mu_Brine / mu_H20);
316 return pow(Evaluation(10), log_D_Brine) * 1e-4;
320 std::vector<Scalar> brineReferenceDensity_;
321 std::vector<Scalar> co2ReferenceDensity_;
322 std::vector<Scalar> salinity_;
323 bool enableDissolution_ =
true;
325 template <
class LhsEval>
326 LhsEval density_(
unsigned regionIdx,
327 const LhsEval& temperature,
328 const LhsEval& pressure,
329 const LhsEval& Rs)
const
331 LhsEval xlCO2 = convertXoGToxoG_(convertRsToXoG_(Rs,regionIdx));
332 LhsEval result = liquidDensity_(temperature,
336 Valgrind::CheckDefined(result);
341 template <
class LhsEval>
342 LhsEval liquidDensity_(
const LhsEval& T,
344 const LhsEval& xlCO2)
const
346 Valgrind::CheckDefined(T);
347 Valgrind::CheckDefined(pl);
348 Valgrind::CheckDefined(xlCO2);
350 if(!extrapolate && T < 273.15) {
351 std::ostringstream oss;
352 oss <<
"Liquid density for Brine and CO2 is only "
353 "defined above 273.15K (is "<<T<<
"K)";
354 throw NumericalIssue(oss.str());
356 if(!extrapolate && pl >= 2.5e8) {
357 std::ostringstream oss;
358 oss <<
"Liquid density for Brine and CO2 is only "
359 "defined below 250MPa (is "<<pl<<
"Pa)";
360 throw NumericalIssue(oss.str());
365 const LhsEval& rho_lCO2 = liquidDensityWaterCO2_(T, pl, xlCO2);
366 const LhsEval& contribCO2 = rho_lCO2 - rho_pure;
368 return rho_brine + contribCO2;
371 template <
class LhsEval>
372 LhsEval liquidDensityWaterCO2_(
const LhsEval& temperature,
374 const LhsEval& xlCO2)
const
379 const LhsEval& tempC = temperature - 273.15;
384 const LhsEval xlH2O = 1.0 - xlCO2;
385 const LhsEval& M_T = M_H2O * xlH2O + M_CO2 * xlCO2;
386 const LhsEval& V_phi =
390 tempC*5.044e-7))) / 1.0e6;
391 return 1/ (xlCO2 * V_phi/M_T + M_H2O * xlH2O / (rho_pure * M_T));
398 template <
class LhsEval>
399 LhsEval convertRsToXoG_(
const LhsEval& Rs,
unsigned regionIdx)
const
401 Scalar rho_oRef = brineReferenceDensity_[regionIdx];
402 Scalar rho_gRef = co2ReferenceDensity_[regionIdx];
404 const LhsEval& rho_oG = Rs*rho_gRef;
405 return rho_oG/(rho_oRef + rho_oG);
412 template <
class LhsEval>
413 LhsEval convertXoGToxoG_(
const LhsEval& XoG)
const
417 return XoG*M_Brine / (M_CO2*(1 - XoG) + XoG*M_Brine);
424 template <
class LhsEval>
425 LhsEval convertxoGToXoG(
const LhsEval& xoG)
const
430 return xoG*M_CO2 / (xoG*(M_CO2 - M_Brine) + M_Brine);
438 template <
class LhsEval>
439 LhsEval convertXoGToRs(
const LhsEval& XoG,
unsigned regionIdx)
const
441 Scalar rho_oRef = brineReferenceDensity_[regionIdx];
442 Scalar rho_gRef = co2ReferenceDensity_[regionIdx];
444 return XoG/(1.0 - XoG)*(rho_oRef/rho_gRef);
448 template <
class LhsEval>
449 LhsEval rsSat_(
unsigned regionIdx,
450 const LhsEval& temperature,
451 const LhsEval& pressure)
const
453 if (!enableDissolution_)
462 salinity_[regionIdx],
469 xlCO2 = max(0.0, min(1.0, xlCO2));
471 return convertXoGToRs(convertxoGToXoG(xlCO2), regionIdx);
474 template <
class LhsEval>
475 static LhsEval liquidEnthalpyBrineCO2_(
const LhsEval& T,
478 const LhsEval& X_CO2_w)
485 static constexpr Scalar f[] = {
486 2.63500E-1, 7.48368E-6, 1.44611E-6, -3.80860E-10
490 static constexpr Scalar a[4][3] = {
491 { 9633.6, -4080.0, +286.49 },
492 { +166.58, +68.577, -4.6856 },
493 { -0.90963, -0.36524, +0.249667E-1 },
494 { +0.17965E-2, +0.71924E-3, -0.4900E-4 }
497 LhsEval theta, h_NaCl;
500 LhsEval delta_hCO2, hg, hw;
505 Scalar scalarTheta = scalarValue(theta);
506 Scalar S_lSAT = f[0] + scalarTheta*(f[1] + scalarTheta*(f[2] + scalarTheta*f[3]));
513 h_NaCl = (3.6710E4*T + 0.5*(6.2770E1)*T*T - ((6.6670E-2)/3)*T*T*T
514 +((2.8000E-5)/4)*(T*T*T*T))/(58.44E3)- 2.045698e+02;
516 Scalar m = 1E3/58.44 * S/(1-S);
521 for (i = 0; i<=3; i++) {
522 for (j=0; j<=2; j++) {
523 d_h = d_h + a[i][j] * pow(theta,
static_cast<Scalar
>(i)) * std::pow(m, j);
527 delta_h = (4.184/(1E3 + (58.44 * m)))*d_h;
530 h_ls1 =(1-S)*hw + S*h_NaCl + S*delta_h;
535 delta_hCO2 = (-57.4375 + T * 0.1325) * 1000/44;
541 return (h_ls1 - X_CO2_w*hw + hg*X_CO2_w)*1E3;
A class for the brine fluid properties.
Binary coefficients for brine and CO2.
A class for the CO2 fluid properties.
A central place for various physical constants occuring in some equations.
Binary coefficients for water and CO2.
A simple version of pure water with density from Hu et al.
A generic class which tabulates all thermodynamic properties of a given component.
Binary coefficients for brine and CO2.
Definition: Brine_CO2.hpp:42
static void calculateMoleFractions(const Evaluation &temperature, const Evaluation &pg, Scalar salinity, const int knownPhaseIdx, Evaluation &xlCO2, Evaluation &ygH2O, bool extrapolate=false)
Returns the mol (!) fraction of CO2 in the liquid phase and the mol_ (!) fraction of H2O in the gas p...
Definition: Brine_CO2.hpp:97
This class represents the Pressure-Volume-Temperature relations of the liquid phase for a CO2-Brine s...
Definition: BrineCo2Pvt.hpp:57
Evaluation internalEnergy(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure, const Evaluation &Rs) const
Returns the specific enthalpy [J/kg] of gas given a set of parameters.
Definition: BrineCo2Pvt.hpp:187
Evaluation saturatedGasDissolutionFactor(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure, const Evaluation &, const Evaluation &) const
Returns the gas dissoluiton factor [m^3/m^3] of the liquid phase.
Definition: BrineCo2Pvt.hpp:267
Evaluation inverseFormationVolumeFactor(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure, const Evaluation &Rs) const
Returns the formation volume factor [-] of the fluid phase.
Definition: BrineCo2Pvt.hpp:229
unsigned numRegions() const
Return the number of PVT regions which are considered by this PVT-object.
Definition: BrineCo2Pvt.hpp:180
Evaluation saturationPressure(unsigned, const Evaluation &, const Evaluation &) const
Returns the saturation pressure of the brine phase [Pa] depending on its mass fraction of the gas com...
Definition: BrineCo2Pvt.hpp:256
void initEnd()
Finish initializing the oil phase PVT properties.
Definition: BrineCo2Pvt.hpp:163
Evaluation saturatedInverseFormationVolumeFactor(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure) const
Returns the formation volume factor [-] of brine saturated with CO2 at a given pressure.
Definition: BrineCo2Pvt.hpp:241
void setReferenceDensities(unsigned regionIdx, Scalar rhoRefBrine, Scalar rhoRefCO2, Scalar)
Initialize the reference densities of all fluids for a given PVT region.
Definition: BrineCo2Pvt.hpp:150
Evaluation viscosity(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure, const Evaluation &) const
Returns the dynamic viscosity [Pa s] of the fluid phase given a set of parameters.
Definition: BrineCo2Pvt.hpp:205
Evaluation saturatedGasDissolutionFactor(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure) const
Returns thegas dissoluiton factor [m^3/m^3] of the liquid phase.
Definition: BrineCo2Pvt.hpp:281
void setEnableDissolvedGas(bool yesno)
Specify whether the PVT model should consider that the CO2 component can dissolve in the brine phase.
Definition: BrineCo2Pvt.hpp:174
Evaluation saturatedViscosity(unsigned, const Evaluation &temperature, const Evaluation &pressure) const
Returns the dynamic viscosity [Pa s] of oil saturated gas at given pressure.
Definition: BrineCo2Pvt.hpp:218
A class for the brine fluid properties.
Definition: Brine.hpp:46
static Scalar molarMass()
The molar mass in of the component.
Definition: Brine.hpp:80
static Evaluation liquidDensity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate=false)
The density of the liquid component at a given pressure in and temperature in .
Definition: Brine.hpp:262
static Evaluation liquidViscosity(const Evaluation &temperature, const Evaluation &)
The dynamic viscosity of pure water.
Definition: Brine.hpp:339
static Scalar salinity
The mass fraction of salt assumed to be in the brine.
Definition: Brine.hpp:49
A class for the CO2 fluid properties.
Definition: CO2.hpp:53
static Scalar molarMass()
The mass in [kg] of one mole of CO2.
Definition: CO2.hpp:66
static Evaluation gasEnthalpy(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate=false)
Specific enthalpy of gaseous CO2 [J/kg].
Definition: CO2.hpp:164
static Evaluation gasDensity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate=false)
The density of CO2 at a given pressure and temperature [kg/m^3].
Definition: CO2.hpp:189
A simple version of pure water with density from Hu et al.
Definition: SimpleHuDuanH2O.hpp:70
static Evaluation liquidEnthalpy(const Evaluation &temperature, const Evaluation &)
Specific enthalpy of liquid water .
Definition: SimpleHuDuanH2O.hpp:198
static Evaluation liquidViscosity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate)
The dynamic viscosity of pure water.
Definition: SimpleHuDuanH2O.hpp:350
static Evaluation liquidDensity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate)
The density of pure water at a given pressure and temperature .
Definition: SimpleHuDuanH2O.hpp:309
static Scalar molarMass()
The molar mass in of water.
Definition: SimpleHuDuanH2O.hpp:104