My Project
BrineCo2Pvt.hpp
Go to the documentation of this file.
1 // -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 // vi: set et ts=4 sw=4 sts=4:
3 /*
4  This file is part of the Open Porous Media project (OPM).
5 
6  OPM is free software: you can redistribute it and/or modify
7  it under the terms of the GNU General Public License as published by
8  the Free Software Foundation, either version 2 of the License, or
9  (at your option) any later version.
10 
11  OPM is distributed in the hope that it will be useful,
12  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  GNU General Public License for more details.
15 
16  You should have received a copy of the GNU General Public License
17  along with OPM. If not, see <http://www.gnu.org/licenses/>.
18 
19  Consult the COPYING file in the top-level source directory of this
20  module for the precise wording of the license and the list of
21  copyright holders.
22 */
27 #ifndef OPM_BRINE_CO2_PVT_HPP
28 #define OPM_BRINE_CO2_PVT_HPP
29 
31 
39 #include <opm/material/components/co2tables.inc>
40 
41 
42 #if HAVE_ECL_INPUT
43 #include <opm/input/eclipse/EclipseState/EclipseState.hpp>
44 #include <opm/input/eclipse/Schedule/Schedule.hpp>
45 #include <opm/input/eclipse/EclipseState/Tables/TableManager.hpp>
46 #endif
47 
48 #include <vector>
49 
50 namespace Opm {
55 template <class Scalar>
57 {
58  static constexpr bool extrapolate = true;
59  //typedef H2O<Scalar> H2O_IAPWS;
60  //typedef Brine<Scalar, H2O_IAPWS> Brine_IAPWS;
61  //typedef TabulatedComponent<Scalar, H2O_IAPWS> H2O_Tabulated;
62  //typedef TabulatedComponent<Scalar, Brine_IAPWS> Brine_Tabulated;
63 
64  //typedef H2O_Tabulated H2O;
65  //typedef Brine_Tabulated Brine;
66 
67 
68 public:
72 
75 
76  explicit BrineCo2Pvt() = default;
77  BrineCo2Pvt(const std::vector<Scalar>& brineReferenceDensity,
78  const std::vector<Scalar>& co2ReferenceDensity,
79  const std::vector<Scalar>& salinity)
80  : brineReferenceDensity_(brineReferenceDensity),
81  co2ReferenceDensity_(co2ReferenceDensity),
82  salinity_(salinity)
83  {
84  Brine::salinity = salinity[0];
85  }
86 
87  BrineCo2Pvt(const std::vector<Scalar>& salinity,
88  Scalar T_ref = 288.71, //(273.15 + 15.56)
89  Scalar P_ref = 101325)
90  : salinity_(salinity)
91  {
92  int num_regions = salinity_.size();
93  co2ReferenceDensity_.resize(num_regions);
94  brineReferenceDensity_.resize(num_regions);
95  Brine::salinity = salinity[0];
96  for (int i = 0; i < num_regions; ++i) {
97  co2ReferenceDensity_[i] = CO2::gasDensity(T_ref, P_ref, true);
98  brineReferenceDensity_[i] = Brine::liquidDensity(T_ref, P_ref, true);
99  }
100  }
101 #if HAVE_ECL_INPUT
106  void initFromState(const EclipseState& eclState, const Schedule&)
107  {
108  if( !eclState.getTableManager().getDensityTable().empty()) {
109  std::cerr << "WARNING: CO2STOR is enabled but DENSITY is in the deck. \n" <<
110  "The surface density is computed based on CO2-BRINE PVT at standard conditions (STCOND) and DENSITY is ignored " << std::endl;
111  }
112 
113  if( eclState.getTableManager().hasTables("PVDO") || !eclState.getTableManager().getPvtoTables().empty()) {
114  std::cerr << "WARNING: CO2STOR is enabled but PVDO or PVTO is in the deck. \n" <<
115  "BRINE PVT properties are computed based on the Hu et al. pvt model and PVDO/PVTO input is ignored. " << std::endl;
116  }
117 
118  setEnableDissolvedGas(eclState.getSimulationConfig().hasDISGAS());
119 
120  // We only supported single pvt region for the co2-brine module
121  size_t numRegions = 1;
122  setNumRegions(numRegions);
123  size_t regionIdx = 0;
124  // Currently we only support constant salinity
125  const Scalar molality = eclState.getTableManager().salinity(); // mol/kg
126  const Scalar MmNaCl = 58e-3; // molar mass of NaCl [kg/mol]
127  // convert to mass fraction
128  Brine::salinity = 1 / ( 1 + 1 / (molality*MmNaCl)); //
129  salinity_[regionIdx] = Brine::salinity;
130  // set the surface conditions using the STCOND keyword
131  Scalar T_ref = eclState.getTableManager().stCond().temperature;
132  Scalar P_ref = eclState.getTableManager().stCond().pressure;
133 
134  brineReferenceDensity_[regionIdx] = Brine::liquidDensity(T_ref, P_ref, extrapolate);
135  co2ReferenceDensity_[regionIdx] = CO2::gasDensity(T_ref, P_ref, extrapolate);
136  }
137 #endif
138 
139  void setNumRegions(size_t numRegions)
140  {
141  brineReferenceDensity_.resize(numRegions);
142  co2ReferenceDensity_.resize(numRegions);
143  salinity_.resize(numRegions);
144  }
145 
146 
150  void setReferenceDensities(unsigned regionIdx,
151  Scalar rhoRefBrine,
152  Scalar rhoRefCO2,
153  Scalar /*rhoRefWater*/)
154  {
155  brineReferenceDensity_[regionIdx] = rhoRefBrine;
156  co2ReferenceDensity_[regionIdx] = rhoRefCO2;
157  }
158 
159 
163  void initEnd()
164  {
165 
166  }
167 
174  void setEnableDissolvedGas(bool yesno)
175  { enableDissolution_ = yesno; }
176 
180  unsigned numRegions() const
181  { return brineReferenceDensity_.size(); }
182 
186  template <class Evaluation>
187  Evaluation internalEnergy(unsigned regionIdx,
188  const Evaluation& temperature,
189  const Evaluation& pressure,
190  const Evaluation& Rs) const
191  {
192 
193  const Evaluation xlCO2 = convertXoGToxoG_(convertRsToXoG_(Rs,regionIdx));
194  return (liquidEnthalpyBrineCO2_(temperature,
195  pressure,
196  salinity_[regionIdx],
197  xlCO2)
198  - pressure / density_(regionIdx, temperature, pressure, Rs));
199  }
200 
204  template <class Evaluation>
205  Evaluation viscosity(unsigned regionIdx,
206  const Evaluation& temperature,
207  const Evaluation& pressure,
208  const Evaluation& /*Rs*/) const
209  {
210  //TODO: The viscosity does not yet depend on the composition
211  return saturatedViscosity(regionIdx, temperature, pressure);
212  }
213 
217  template <class Evaluation>
218  Evaluation saturatedViscosity(unsigned /*regionIdx*/,
219  const Evaluation& temperature,
220  const Evaluation& pressure) const
221  {
222  return Brine::liquidViscosity(temperature, pressure);
223  }
224 
228  template <class Evaluation>
229  Evaluation inverseFormationVolumeFactor(unsigned regionIdx,
230  const Evaluation& temperature,
231  const Evaluation& pressure,
232  const Evaluation& Rs) const
233  {
234  return (1.0 - convertRsToXoG_(Rs,regionIdx)) * density_(regionIdx, temperature, pressure, Rs)/brineReferenceDensity_[regionIdx];
235  }
236 
240  template <class Evaluation>
241  Evaluation saturatedInverseFormationVolumeFactor(unsigned regionIdx,
242  const Evaluation& temperature,
243  const Evaluation& pressure) const
244  {
245  Evaluation rsSat = rsSat_(regionIdx, temperature, pressure);
246  return (1.0 - convertRsToXoG_(rsSat,regionIdx)) * density_(regionIdx, temperature, pressure, rsSat)/brineReferenceDensity_[regionIdx];
247  }
248 
255  template <class Evaluation>
256  Evaluation saturationPressure(unsigned /*regionIdx*/,
257  const Evaluation& /*temperature*/,
258  const Evaluation& /*Rs*/) const
259  {
260  throw std::runtime_error("Requested the saturation pressure for the brine-co2 pvt module. Not yet implemented.");
261  }
262 
266  template <class Evaluation>
267  Evaluation saturatedGasDissolutionFactor(unsigned regionIdx,
268  const Evaluation& temperature,
269  const Evaluation& pressure,
270  const Evaluation& /*oilSaturation*/,
271  const Evaluation& /*maxOilSaturation*/) const
272  {
273  //TODO support VAPPARS
274  return rsSat_(regionIdx, temperature, pressure);
275  }
276 
280  template <class Evaluation>
281  Evaluation saturatedGasDissolutionFactor(unsigned regionIdx,
282  const Evaluation& temperature,
283  const Evaluation& pressure) const
284  {
285  return rsSat_(regionIdx, temperature, pressure);
286  }
287 
288  const Scalar oilReferenceDensity(unsigned regionIdx) const
289  { return brineReferenceDensity_[regionIdx]; }
290 
291  const Scalar gasReferenceDensity(unsigned regionIdx) const
292  { return co2ReferenceDensity_[regionIdx]; }
293 
294  const Scalar salinity(unsigned regionIdx) const
295  { return salinity_[regionIdx]; }
296 
297  bool operator==(const BrineCo2Pvt<Scalar>& data) const
298  {
299  return co2ReferenceDensity_ == data.co2ReferenceDensity_ &&
300  brineReferenceDensity_ == data.brineReferenceDensity_;
301  }
302 
303  template <class Evaluation>
304  Evaluation diffusionCoefficient(const Evaluation& temperature,
305  const Evaluation& pressure,
306  unsigned /*compIdx*/) const
307  {
308  //Diffusion coefficient of CO2 in pure water according to (McLachlan and Danckwerts, 1972)
309  const Evaluation log_D_H20 = -4.1764 + 712.52 / temperature - 2.5907e5 / (temperature*temperature);
310 
311  //Diffusion coefficient of CO2 in the brine phase modified following (Ratcliff and Holdcroft,1963 and Al-Rawajfeh, 2004)
312  const Evaluation& mu_H20 = H2O::liquidViscosity(temperature, pressure, extrapolate); // Water viscosity
313  const Evaluation& mu_Brine = Brine::liquidViscosity(temperature, pressure); // Brine viscosity
314  const Evaluation log_D_Brine = log_D_H20 - 0.87*log10(mu_Brine / mu_H20);
315 
316  return pow(Evaluation(10), log_D_Brine) * 1e-4; // convert from cm2/s to m2/s
317  }
318 
319 private:
320  std::vector<Scalar> brineReferenceDensity_;
321  std::vector<Scalar> co2ReferenceDensity_;
322  std::vector<Scalar> salinity_;
323  bool enableDissolution_ = true;
324 
325  template <class LhsEval>
326  LhsEval density_(unsigned regionIdx,
327  const LhsEval& temperature,
328  const LhsEval& pressure,
329  const LhsEval& Rs) const
330  {
331  LhsEval xlCO2 = convertXoGToxoG_(convertRsToXoG_(Rs,regionIdx));
332  LhsEval result = liquidDensity_(temperature,
333  pressure,
334  xlCO2);
335 
336  Valgrind::CheckDefined(result);
337  return result;
338  }
339 
340 
341  template <class LhsEval>
342  LhsEval liquidDensity_(const LhsEval& T,
343  const LhsEval& pl,
344  const LhsEval& xlCO2) const
345  {
346  Valgrind::CheckDefined(T);
347  Valgrind::CheckDefined(pl);
348  Valgrind::CheckDefined(xlCO2);
349 
350  if(!extrapolate && T < 273.15) {
351  std::ostringstream oss;
352  oss << "Liquid density for Brine and CO2 is only "
353  "defined above 273.15K (is "<<T<<"K)";
354  throw NumericalIssue(oss.str());
355  }
356  if(!extrapolate && pl >= 2.5e8) {
357  std::ostringstream oss;
358  oss << "Liquid density for Brine and CO2 is only "
359  "defined below 250MPa (is "<<pl<<"Pa)";
360  throw NumericalIssue(oss.str());
361  }
362 
363  const LhsEval& rho_brine = Brine::liquidDensity(T, pl, extrapolate);
364  const LhsEval& rho_pure = H2O::liquidDensity(T, pl, extrapolate);
365  const LhsEval& rho_lCO2 = liquidDensityWaterCO2_(T, pl, xlCO2);
366  const LhsEval& contribCO2 = rho_lCO2 - rho_pure;
367 
368  return rho_brine + contribCO2;
369  }
370 
371  template <class LhsEval>
372  LhsEval liquidDensityWaterCO2_(const LhsEval& temperature,
373  const LhsEval& pl,
374  const LhsEval& xlCO2) const
375  {
376  Scalar M_CO2 = CO2::molarMass();
377  Scalar M_H2O = H2O::molarMass();
378 
379  const LhsEval& tempC = temperature - 273.15; /* tempC : temperature in °C */
380  const LhsEval& rho_pure = H2O::liquidDensity(temperature, pl, extrapolate);
381  // calculate the mole fraction of CO2 in the liquid. note that xlH2O is available
382  // as a function parameter, but in the case of a pure gas phase the value of M_T
383  // for the virtual liquid phase can become very large
384  const LhsEval xlH2O = 1.0 - xlCO2;
385  const LhsEval& M_T = M_H2O * xlH2O + M_CO2 * xlCO2;
386  const LhsEval& V_phi =
387  (37.51 +
388  tempC*(-9.585e-2 +
389  tempC*(8.74e-4 -
390  tempC*5.044e-7))) / 1.0e6;
391  return 1/ (xlCO2 * V_phi/M_T + M_H2O * xlH2O / (rho_pure * M_T));
392  }
393 
398  template <class LhsEval>
399  LhsEval convertRsToXoG_(const LhsEval& Rs, unsigned regionIdx) const
400  {
401  Scalar rho_oRef = brineReferenceDensity_[regionIdx];
402  Scalar rho_gRef = co2ReferenceDensity_[regionIdx];
403 
404  const LhsEval& rho_oG = Rs*rho_gRef;
405  return rho_oG/(rho_oRef + rho_oG);
406  }
407 
408 
412  template <class LhsEval>
413  LhsEval convertXoGToxoG_(const LhsEval& XoG) const
414  {
415  Scalar M_CO2 = CO2::molarMass();
416  Scalar M_Brine = Brine::molarMass();
417  return XoG*M_Brine / (M_CO2*(1 - XoG) + XoG*M_Brine);
418  }
419 
420 
424  template <class LhsEval>
425  LhsEval convertxoGToXoG(const LhsEval& xoG) const
426  {
427  Scalar M_CO2 = CO2::molarMass();
428  Scalar M_Brine = Brine::molarMass();
429 
430  return xoG*M_CO2 / (xoG*(M_CO2 - M_Brine) + M_Brine);
431  }
432 
433 
438  template <class LhsEval>
439  LhsEval convertXoGToRs(const LhsEval& XoG, unsigned regionIdx) const
440  {
441  Scalar rho_oRef = brineReferenceDensity_[regionIdx];
442  Scalar rho_gRef = co2ReferenceDensity_[regionIdx];
443 
444  return XoG/(1.0 - XoG)*(rho_oRef/rho_gRef);
445  }
446 
447 
448  template <class LhsEval>
449  LhsEval rsSat_(unsigned regionIdx,
450  const LhsEval& temperature,
451  const LhsEval& pressure) const
452  {
453  if (!enableDissolution_)
454  return 0.0;
455 
456  // calulate the equilibrium composition for the given
457  // temperature and pressure.
458  LhsEval xgH2O;
459  LhsEval xlCO2;
461  pressure,
462  salinity_[regionIdx],
463  /*knownPhaseIdx=*/-1,
464  xlCO2,
465  xgH2O,
466  extrapolate);
467 
468  // normalize the phase compositions
469  xlCO2 = max(0.0, min(1.0, xlCO2));
470 
471  return convertXoGToRs(convertxoGToXoG(xlCO2), regionIdx);
472  }
473 
474  template <class LhsEval>
475  static LhsEval liquidEnthalpyBrineCO2_(const LhsEval& T,
476  const LhsEval& p,
477  Scalar S, // salinity
478  const LhsEval& X_CO2_w)
479  {
480  /* X_CO2_w : mass fraction of CO2 in brine */
481 
482  /* same function as enthalpy_brine, only extended by CO2 content */
483 
484  /*Numerical coefficents from PALLISER*/
485  static constexpr Scalar f[] = {
486  2.63500E-1, 7.48368E-6, 1.44611E-6, -3.80860E-10
487  };
488 
489  /*Numerical coefficents from MICHAELIDES for the enthalpy of brine*/
490  static constexpr Scalar a[4][3] = {
491  { 9633.6, -4080.0, +286.49 },
492  { +166.58, +68.577, -4.6856 },
493  { -0.90963, -0.36524, +0.249667E-1 },
494  { +0.17965E-2, +0.71924E-3, -0.4900E-4 }
495  };
496 
497  LhsEval theta, h_NaCl;
498  LhsEval h_ls1, d_h;
499  LhsEval delta_h;
500  LhsEval delta_hCO2, hg, hw;
501 
502  theta = T - 273.15;
503 
504  // Regularization
505  Scalar scalarTheta = scalarValue(theta);
506  Scalar S_lSAT = f[0] + scalarTheta*(f[1] + scalarTheta*(f[2] + scalarTheta*f[3]));
507  if (S > S_lSAT)
508  S = S_lSAT;
509 
510  hw = H2O::liquidEnthalpy(T, p) /1E3; /* kJ/kg */
511 
512  /*DAUBERT and DANNER*/
513  /*U=*/h_NaCl = (3.6710E4*T + 0.5*(6.2770E1)*T*T - ((6.6670E-2)/3)*T*T*T
514  +((2.8000E-5)/4)*(T*T*T*T))/(58.44E3)- 2.045698e+02; /* kJ/kg */
515 
516  Scalar m = 1E3/58.44 * S/(1-S);
517  int i = 0;
518  int j = 0;
519  d_h = 0;
520 
521  for (i = 0; i<=3; i++) {
522  for (j=0; j<=2; j++) {
523  d_h = d_h + a[i][j] * pow(theta, static_cast<Scalar>(i)) * std::pow(m, j);
524  }
525  }
526  /* heat of dissolution for halite according to Michaelides 1971 */
527  delta_h = (4.184/(1E3 + (58.44 * m)))*d_h;
528 
529  /* Enthalpy of brine without CO2 */
530  h_ls1 =(1-S)*hw + S*h_NaCl + S*delta_h; /* kJ/kg */
531 
532  /* heat of dissolution for CO2 according to Fig. 6 in Duan and Sun 2003. (kJ/kg)
533  In the relevant temperature ranges CO2 dissolution is
534  exothermal */
535  delta_hCO2 = (-57.4375 + T * 0.1325) * 1000/44;
536 
537  /* enthalpy contribution of CO2 (kJ/kg) */
538  hg = CO2::gasEnthalpy(T, p, extrapolate)/1E3 + delta_hCO2;
539 
540  /* Enthalpy of brine with dissolved CO2 */
541  return (h_ls1 - X_CO2_w*hw + hg*X_CO2_w)*1E3; /*J/kg*/
542  }
543 
544 };
545 
546 } // namespace Opm
547 
548 #endif
A class for the brine fluid properties.
Binary coefficients for brine and CO2.
A class for the CO2 fluid properties.
A central place for various physical constants occuring in some equations.
Binary coefficients for water and CO2.
A simple version of pure water with density from Hu et al.
A generic class which tabulates all thermodynamic properties of a given component.
Implements a scalar function that depends on two variables and which is sampled on an uniform X-Y gri...
Binary coefficients for brine and CO2.
Definition: Brine_CO2.hpp:42
static void calculateMoleFractions(const Evaluation &temperature, const Evaluation &pg, Scalar salinity, const int knownPhaseIdx, Evaluation &xlCO2, Evaluation &ygH2O, bool extrapolate=false)
Returns the mol (!) fraction of CO2 in the liquid phase and the mol_ (!) fraction of H2O in the gas p...
Definition: Brine_CO2.hpp:97
This class represents the Pressure-Volume-Temperature relations of the liquid phase for a CO2-Brine s...
Definition: BrineCo2Pvt.hpp:57
Evaluation internalEnergy(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure, const Evaluation &Rs) const
Returns the specific enthalpy [J/kg] of gas given a set of parameters.
Definition: BrineCo2Pvt.hpp:187
Evaluation saturatedGasDissolutionFactor(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure, const Evaluation &, const Evaluation &) const
Returns the gas dissoluiton factor [m^3/m^3] of the liquid phase.
Definition: BrineCo2Pvt.hpp:267
Evaluation inverseFormationVolumeFactor(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure, const Evaluation &Rs) const
Returns the formation volume factor [-] of the fluid phase.
Definition: BrineCo2Pvt.hpp:229
unsigned numRegions() const
Return the number of PVT regions which are considered by this PVT-object.
Definition: BrineCo2Pvt.hpp:180
Evaluation saturationPressure(unsigned, const Evaluation &, const Evaluation &) const
Returns the saturation pressure of the brine phase [Pa] depending on its mass fraction of the gas com...
Definition: BrineCo2Pvt.hpp:256
void initEnd()
Finish initializing the oil phase PVT properties.
Definition: BrineCo2Pvt.hpp:163
Evaluation saturatedInverseFormationVolumeFactor(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure) const
Returns the formation volume factor [-] of brine saturated with CO2 at a given pressure.
Definition: BrineCo2Pvt.hpp:241
void setReferenceDensities(unsigned regionIdx, Scalar rhoRefBrine, Scalar rhoRefCO2, Scalar)
Initialize the reference densities of all fluids for a given PVT region.
Definition: BrineCo2Pvt.hpp:150
Evaluation viscosity(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure, const Evaluation &) const
Returns the dynamic viscosity [Pa s] of the fluid phase given a set of parameters.
Definition: BrineCo2Pvt.hpp:205
Evaluation saturatedGasDissolutionFactor(unsigned regionIdx, const Evaluation &temperature, const Evaluation &pressure) const
Returns thegas dissoluiton factor [m^3/m^3] of the liquid phase.
Definition: BrineCo2Pvt.hpp:281
void setEnableDissolvedGas(bool yesno)
Specify whether the PVT model should consider that the CO2 component can dissolve in the brine phase.
Definition: BrineCo2Pvt.hpp:174
Evaluation saturatedViscosity(unsigned, const Evaluation &temperature, const Evaluation &pressure) const
Returns the dynamic viscosity [Pa s] of oil saturated gas at given pressure.
Definition: BrineCo2Pvt.hpp:218
A class for the brine fluid properties.
Definition: Brine.hpp:46
static Scalar molarMass()
The molar mass in of the component.
Definition: Brine.hpp:80
static Evaluation liquidDensity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate=false)
The density of the liquid component at a given pressure in and temperature in .
Definition: Brine.hpp:262
static Evaluation liquidViscosity(const Evaluation &temperature, const Evaluation &)
The dynamic viscosity of pure water.
Definition: Brine.hpp:339
static Scalar salinity
The mass fraction of salt assumed to be in the brine.
Definition: Brine.hpp:49
A class for the CO2 fluid properties.
Definition: CO2.hpp:53
static Scalar molarMass()
The mass in [kg] of one mole of CO2.
Definition: CO2.hpp:66
static Evaluation gasEnthalpy(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate=false)
Specific enthalpy of gaseous CO2 [J/kg].
Definition: CO2.hpp:164
static Evaluation gasDensity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate=false)
The density of CO2 at a given pressure and temperature [kg/m^3].
Definition: CO2.hpp:189
A simple version of pure water with density from Hu et al.
Definition: SimpleHuDuanH2O.hpp:70
static Evaluation liquidEnthalpy(const Evaluation &temperature, const Evaluation &)
Specific enthalpy of liquid water .
Definition: SimpleHuDuanH2O.hpp:198
static Evaluation liquidViscosity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate)
The dynamic viscosity of pure water.
Definition: SimpleHuDuanH2O.hpp:350
static Evaluation liquidDensity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate)
The density of pure water at a given pressure and temperature .
Definition: SimpleHuDuanH2O.hpp:309
static Scalar molarMass()
The molar mass in of water.
Definition: SimpleHuDuanH2O.hpp:104