[image: image1.png]symbian

<Contacts Model Usage Guide>
[image: image2.png]symbian

<SXX.XXXnnn.nnn>
<Security Classification>
<Draft> Rev <0.1>

Contact Model Usage Guide
	
	
	
	

	Security Classification:
	<Security Classification>
	Team/Department:
	Core Apps/C&M

	Document Reference:
	<SXX.XXXnnn.nnn>
	Author(s):
	Core Apps Team

	Status:
	<Draft>
	Owner(s):
	Core Apps Team

	Version:
	0.1
	Approver(s)
	Core Apps Team

	Last Revised Date:
	22/04/04
	
	

	
	
	
	

1 Introduction

1.1 Purpose and Scope

The purpose of this document is to give guidelines on how to use the Contacts Model API most efficiently for a range of typical operations.
2 Contacts API Usage Guidelines
2.1 General

· Don’t re-evaluate information that is already known. It is relatively expensive for the Contacts model to retrieve information from disk.
· Access the minimal amount of Contact information necessary for the operation required.

· Where possible, use the Contact information that is available for processing rather than waiting for information that is not immediately required. For example in a listbox UI application, populate the listbox incrementally and draw it as early as possible: If displaying the email addresses of a 300 message inbox, look-up the first 10 that are displayed, draw those 10 then continue processing in the background.

2.2 Reading Contacts
2.2.1 Reading some of a Contacts fields

Read the minimal amount of Contact information necessary for the operation required.
· CContactDatabase::ReadMinimalContactL

This method reads a Contact Item (e.g. a Contact card, own card, template, or contact group), but does not read the group or template information. Specifically, the following are not read : the list of group members and the group label (if the item is a CContactGroup) ; the template label (if the item is a CContactCardTemplate) ; the list of groups, if any, to which the item belongs (this is not applicable to templates) ; any fields inherited from a non-system template (not applicable if the item is a CContactCardTemplate).

· Use CContactDatabase::ReadContactL and use a CContactItemViewDef
A CContactItemViewDef specifies which fields to populate the Contact with. This can be passed in to individual calls to ReadContactL (or ReadContactLC) or the default View Definition can be set with CContactDatabase::SetViewDefinitionL. Only the fields specified in the View Definition will be read from the Contacts Model.
2.3 Editing Contacts

2.3.1 General

The guidelines above concerning Reading Contacts also apply to the methods to open Contacts for editing (e.g. OpenContactL, UpdateContactLC etc). That is, there is a performance gain in specifying through a CContactItemViewDef only the fields that are to be edited, since less of the Contact will be retrieved from the Model.
Also, it is more efficient to retrieve a Contact and update it as opposed to deleting the Contact and then adding it again. The Contacts model database file will expand more if Contacts are deleted and re-added as opposed to updated.
2.3.2 Repeated Update of Single Contacts (Sync Update)

Updating single Contacts involves use of OpenContactL, OpenContactLX or importing VCard data where the UID is already in the Contacts Model. If update is to be performed repeatedly for many Contacts in succession (e.g. in the case of many SyncML update operations in a row), for performance reasons it is worth updating Contacts in order of their TContactItemId.

For example, if it is required to update Contacts with Ids in a random order it is a good idea for performance reasons to make a series of calls to OpenContactL passing in the Contact Ids in ascending order.

CContactDatabase::ImportContactsL returns an array of CContactItems. This reflects the updated state of the Contact Items and therefore the LastModified time can be obtained directly from the returned items and it is not necessary to read them again to obtain this.
2.4 Deleting Contacts

2.4.1 Bulk Deletion

If it is required to delete many (>16) Contacts, the CContactDatabase::DeleteContactsL method should be used. This method takes a CContactIdArray of TContactItemIds to be deleted. The order of the TContactItemIds in the CContactIdArray is unimportant. The Contacts in the CContactIdArray will be deleted in TContactItemId order (i.e. in order of creation).
After every 16 Contacts have been deleted, and after the deletion of the last Contact in the CContactIdArray, deletions will be Committed to the Contacts Model.

After every 64 Contacts have been deleted, the Contacts Model will be compressed. This means that if the CContactIdArray passed in contains less than 64 Contacts, no compression will occur.
2.4.2 Repeated Deletion of Single Contacts (Sync Deletion)
Deleting single Contacts involves use of DeleteContactL. If this is to be called repeatedly for many Contacts in succession (e.g. in the case of many SyncML deletion operations in a row), for performance reasons it is worth deleting Contacts in order of their TContactItemID.
For example, if it is required to delete Contacts with Ids in a random order it is a good idea for performance reasons to make a series of calls to DeleteContactL passing in the Contact Ids in ascending order.
2.5 Obtaining and Maintaining Lists of Contacts

2.5.1 TContactIter
TContactIter is an Iterator class that can be used to retrieve sorted Contacts from the Contacts model. It operates on a Sorted list of Contacts and therefore retrieval of Contacts is fast. However, there is an initial overhead associated with creating the sorted list and also there is an ongoing overhead as every change to the Contacts model will result in the list being notified, updated and potentially resorted.

2.5.2 Views

It is recommended that clients of the Contacts model who are involved in User Interfaces processing use Views to maintain and access Contact information. Changes to Contacts in Views are notified via the MContactViewObserver interface. It is recommended that when handling an event, as little work as possible is done. If it is necessary to make a long running synchronous call to another method or to do large amounts of processing in response to the event, consider launching an active object to defer the work until later.

2.5.3 Other Methods

It is not recommended that clients of the Contacts model who are involved in Synchronization processing use Views. It is suggested that calls are made to CContactDatabase::FilterDatabaseL instead, which returns an array of the filtered items TContactItemIds.
2.6 Searching
2.6.1 Field Searches
Searching has been optimised for the following field types:

· First name (KUidContactFieldGivenName)

· Last name (KUidContactFieldFamilyName)

· Company name (KUidContactFieldCompanyName)

· Email (KUidContactFieldEMail)

Clients should only ask to search the field types they really need, since each additional field will require more comparisons to be performed.
2.6.2 Email Searches
· It is recommended that email address are looked-up as follows:

_LIT(KEmailAddressToLookup,”email@symbian.com”);

CContactDatabase* database = CContactDatabase::OpenL();

CContactTextDef* def=CContactTextDef::NewL();

def->Append(KUidContactFieldEMailValue);

CContactIdArray* results;

results=database->FindLC(KEmailAddressToLookup, def);
2.6.3 Phone Searches

An optimised method for Phone Number lookup is also provided (CContactDatabase:: MatchPhoneNumberL). This is primarily intended for looking up caller ID’s on incoming calls/SMS messages.

The recommended way to look-up the contact id(s) that corresponds to a phone number is shown below. The below example performs a 7 digit match:

const TInt KNumberOfDigitsToMatch=7;

_LIT(KPhoneNumberToMatch,”020 75632000”);

CContactDatabase* database = CContactDatabase::OpenL();

CContactIdArray* results;

results = database>MatchPhoneNumberL(KPhoneNumberToMatch,KNumberOfDigitsToMatch);

2.6.4 String Searches

When using CContactViewBase::MatchesCriteriaL, use the most restrictive search possible. Do not use a full string search when only a prefix match (which searches for equality of the start of strings) is required.
2.7 Sorting
Sorting has been optimised for the following field types:

· First name (KUidContactFieldGivenName)

· Last name (KUidContactFieldFamilyName)

· Company name (KUidContactFieldCompanyName)

Sorting will be a LOT slower if field types are included other than those shown above in the sort order.

The Contacts Model also supports server side sorting and allows multiple clients to share a single sorted list with a very low overhead (the sort is only done once, regardless of how many clients are using it). It is recommended that Views are used rather than shared sorted lists.

2.8 Compressing the Contacts Model

Compression frequency will depend on the specific device requirements.

Compression is quite an expensive task to perform. It is suggested that it is avoided as much as possible and CContactDatabase::CompactL is called only when needed. The Contacts model will compress the database whenever CContactDatabase::CompactL is called, but this should not be called too frequently. It would be wasteful and unnecessary to compress after every Contacts Model operation.

The Contacts Model has a method to determine whether a compression is advisable, CContactDatabase::CompressRequired. This method returns true or false using database size and wasted space figures obtained from DBMS. The current implementation returns true if more than 64K of disk space is wasted, OR if more than 16K of disk space is wasted AND this is more than 50% of the file size, OR if more than 16K of disk space is wasted AND there is less than 5% free disk space, OR if more than 16K of disk space is wasted AND there is less than 16K free disk space. These figures may sound quite high, but it is normal to have a fairly high amount of wasted space (non-live data) in a Contacts database. This is to account for updates and deleted contacts.

Different products will have a different trade-off between frequency of compression and space wasted.

CContactDatabase::CompressRequired is a synchronous method and in typical cases takes almost as long to run as CContactDatabase::CompactL. Therefore for Sync operations and for repeated consecutive operations on the Contacts Model it is more efficient to call CompactL after every 16 operations that alter the Contacts Model, rather than making repeated calls to CContactDatabase::CompressRequired.
It is also important to be aware that the CompactL() method is a synchronous and potentially long running method which could make your application appear unresponsive. The asynchronous compress API CreateCompressorLC could be used in preference; however this does not permit simultaneous compression and database access. The compression locks the whole database, and the database should not be accessed whilst a compression is in progress.
2.9 Corruption Recovery

When opening the database, CContactDatabase::IsDamaged should be called to determine if the database has been corrupted. If it has, CContactDatabase::RecoverL should be used to ensure that the database can be opened wherever possible.
2.10 Transactions

By default, operations that modify the contents of the Contacts model are performed in a transaction encompassing that operation. By using the api calls CContactsDatabase::DatabaseBeginLC and CContactsDatabase::DatabaseCommitLP it is possible to group operations in a larger transaction. One advantage of this is that the Contact model file grows less if operations are grouped in a transaction than it would if operations are performed in their own individual transactions. Long running transactions are not advisable. Using transactions also increases the possibility of contention with other clients of the Contacts model, and thereby increases the possibility of operations returning KErrLocked. There is also more memory usage overhead using transactions.
2.11 Contacts Model File
It is preferable to use the versions of OpenL, ReplaceL and CreateL that do not specify a file name rather than specifying a file name as being the default name and location.
3 Further Information

3.1 People

	Role
	Person / People

	Reviewers
	

	Contributors
	

	Distribution
	

3.2 References

	No.
	Document Reference
	Version
	Description

	[R1]
	
	
	

	[R2]
	
	
	

3.3 Open Issues

The following issues need to be resolved before this document is completed:

3.4 Glossary

The following technical terms and abbreviations are used within this document.

	Term
	Definition

	
	

3.5 Document History

	Date
	Version
	Status
	Author
	Description

	30-05-2004
	0.1
	Draft
	Core Apps Team
	First draft

Copyright © http://creativecommons.org/licenses/by-sa/2.0/uk/
<Security Classification>
Page 1 of 6

All rights reserved
Copyright © http://creativecommons.org/licenses/by-sa/2.0/uk/
<Security Classification>
Page 2 of 6

All rights reserved

[image: image3.png]symbian

_1136804818

_1136804821

