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Foreword

Why3 is a platform for deductive program verification. It provides a rich language for
specification and programming, called WhyML, and relies on external theorem provers,
both automated and interactive, to discharge verification conditions. Why3 comes with
a standard library of logical theories (integer and real arithmetic, Boolean operations,
sets and maps, etc.) and basic programming data structures (arrays, queues, hash ta-
bles, etc.). A user can write WhyML programs directly and get correct-by-construction
OCaml programs through an automated extraction mechanism. WhyML is also used as
an intermediate language for the verification of C, Java, or Ada programs.

Why3 is a complete reimplementation of the former Why platform [6]. Among the new
features are: numerous extensions to the input language, a new architecture for calling
external provers, and a well-designed API, allowing to use Why3 as a software library. An
important emphasis is put on modularity and genericity, giving the end user a possibility
to easily reuse Why3 formalizations or to add support for a new external prover if wanted.

Availability

Why3 project page is http://why3.1ri.fr/. The last distribution is available there, in
source format, together with this documentation and several examples.

Why3 is distributed as open source and freely available under the terms of the GNU
LGPL 2.1. See the file LICENSE.

See the file INSTALL for quick installation instructions, and Section 5 of this document
for more detailed instructions.

Contact

There is a public mailing list for users’ discussions: http://lists.gforge.inria.fr/
mailman/listinfo/why3-club.

Report any bug to the Why3 Bug Tracking System: https://gforge.inria.fr/
tracker/7atid=10293&group_id=2990&func=browse.
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Chapter 1

Getting Started

1.1 Hello Proofs

The first step in using Why3 is to write a suitable input file. When one wants to learn
a programming language, one starts by writing a basic program. Here is our first Why3
file, which is the file examples/logic/hello_proof.why of the distribution. It contains
a small set of goals.

theory HelloProof "My wery first Why3 theory"”
goal G1 : true
goal G2 : (true -> false) /\ (true \/ false)
use import int.Int
goal G3: forall x:int. x*x >= 0

end

Any declaration must occur inside a theory, which is in that example called Hel-
loProof and labeled with a comment inside double quotes. It contains three goals named
G1,G9,Gs. The first two are basic propositional goals, whereas the third involves some
integer arithmetic, and thus it requires to import the theory of integer arithmetic from
the Why3 standard library, which is done by the use declaration above.

We don’t give more details here about the syntax and refer to Chapter 2 for detailed
explanations. In the following, we show how this file is handled in the Why3 GUI (Sec-
tion 1.2) then in batch mode using the why3 executable (Section 1.3).

1.2 Getting Started with the GUI

The graphical interface allows to browse into a file or a set of files, and check the validity
of goals with external provers, in a friendly way. This section presents the basic use of
this GUI. Please refer to Section 6.3 for a more complete description.

The GUI is launched on the file above as follows.

why3 ide hello_proof.why

11




12 CHAPTER 1. GETTING STARTED

A Why3 Interactive Proof Session
File \ijew Tools Help
Context Theories/Goals Status Time 1
@® Unproved goals v (@ hello_proof.why (]
Provers act '@
Al-Ergo 0.93 Ac2 @
(ifec @
Coqg 8.2pl1
Simplify 1.5.4
Transformations
3 Split 1
&4 Inline
Tools
&7 Edit
&y Replay
Cleaning
@l Remove
¥ Clean

Figure 1.1: The GUI when started the very first time

When the GUI is started for the first time, you should get a window that looks like the
screenshot of Figure 1.1.

The left column is a tool bar which provides different actions to apply on goals. The
section “Provers” displays the provers that were detected as installed on your computer.!
Three provers were detected, in this case, these are Alt-Ergo [1], Coq [2] and Simplify [5].

The middle part is a tree view that allows to browse inside the theories. In this tree
view, we have a structured view of the file: this file contains one theory, itself containing
three goals.

In Figure 1.2, we clicked on the row corresponding to goal G1. The task associated
with this goal is then displayed on the top right, and the corresponding part of the input
file is shown on the bottom right part.

1.2.1 Calling provers on goals

You are now ready to call these provers on the goals. Whenever you click on a prover
button, this prover is called on the goal selected in the tree view. You can select several
goals at a time, either by using multi-selection (typically by clicking while pressing the
Shift or Ctrl key) or by selecting the parent theory or the parent file. Let us now select

'Tf not done yet, you must perform prover autodetection using why3 config --detect-provers
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Why3 Interactive Proof Session ¥ @& &
ols Help
Theories/Goals Status Time | 1theory Task
lgoals |v @ hello_proofwhy @ % type int
~ @ HelloProof @ 4 type real
B
. 6 predicate (=)'a'a
Ll G3 @ 8 (¥ use Builtin *)
pIl g
10 goal G1 :true
5.4 11 end
tions A
t 1 theory HelloProof "My wvery first Why3 theory"
2
'= 3 goal B : true
A
5 goal G2 : (true -= false) A\ (true \/ false)
t 5]
7 use import int.Int
ay =]
9 goal G3: forall x:int. x*¥x >=0
10
e 11 end
12
in
£ LA 4
< < » file: examples/hello_proof/. /hello_proofwhy

Figure 1.2: The GUI with goal G1 selected

the theory “HelloProof” and click on the Simplify button. After a short time, you should
get the display of Figure 1.3.

Goal (g7 is now marked with a green “checked” icon in the status column. This means
that the goal is proved by the Simplify prover. On the contrary, the two other goals are
not proved, they remain marked with an orange question mark.

You can immediately attempt to prove the remaining goals using another prover, e.g.
Alt-Ergo, by clicking on the corresponding button. Goal G3 should be proved now, but
not GGs.

1.2.2 Applying transformations

Instead of calling a prover on a goal, you can apply a transformation to it. Since G is a
conjunction, a possibility is to split it into subgoals. You can do that by clicking on the
Split button of section “Transformations” of the left toolbar. Now you have two subgoals,
and you can try again a prover on them, for example Simplify. We already have a lot
of goals and proof attempts, so it is a good idea to close the sub-trees which are already
proved: this can be done by the menu View/Collapse proved goals, or even better by its
shortcut “Ctrl-C”. You should see now what is displayed on Figure 1.4.

The first part of goal G5 is still unproved. As a last resort, we can try to call the Coq
proof assistant. The first step is to click on the Coq button. A new sub-row appear for
Coq, and unsurprisingly the goal is not proved by Coq either. What can be done now
is editing the proof: select that row and then click on the Edit button in section “Tools”
of the toolbar. This should launch the Coq proof editor, which is coqide by default (see
Section 6.3 for details on how to configure this). You get now a regular Coq file to fill in,
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‘Theories/Goals Status Time | 1
v~ @ hello_proofwhy @
= HelloProof
vdal o
@}Simplify 1.5.4 @ 001
v (4 G2 @
@}Simplify 1.5.4 @ o001
v (1 G3 @
,@}Simplify 1.5.4 @ o001

theory HEIBBEEEE '\ very first Why3 theory"

goal G1 : true

1
2
3
4
5 goal G2 : (true -=> false) A (true \/ false)
5]
7 use import int.Int
8

9 goal G3: forall x:int, x*x >=10
10
11l end
12

file: hello_proof/../hello_proof.why

Figure 1.3: The GUI after Simplify prover is run on each goal
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Figure 1.4: The GUI after splitting goal G2 and collapsing proved goals
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File Edit Mavigation TryTactics Templates Queries Display Con

[——]

X YD ITAaYO B G
@hello_proof HelloProof G2 1.v

{(* This file 1s generated by Why3's Cog driver *)
{(* Beware! Only edit allowed sections below * )
Require Import BuiltIn.

Require BulltIn.

(* Why3 goal *)
Theorem G2 : False.
Qed.

Figure 1.5: CoqlIDE on subgoal 1 of G2

as shown on Figure 1.5. Please be mindful of the comments of this file. They indicate
where Why3 expects you to fill the blanks. Note that the comments themselves should not
be removed, as they are needed to properly regenerate the file when the goal is changed.
See Section 9.3 for more details.

Of course, in that particular case, the goal cannot be proved since it is not valid. The
only thing to do is to fix the input file, as explained below.

1.2.3 Modifying the input

Currently, the GUI does not allow to modify the input file. You must edit the file external
by some editor of your choice. Let us assume we change the goal Gy by replacing the first
occurrence of true by false, e.g.

goal G2 : (false -> false) /\ (true \/ false)

We can reload the modified file in the IDE using menu File/Reload, or the shortcut “Ctrl-
R”. We get the tree view shown on Figure 1.6.

The important feature to notice first is that all the previous proof attempts and trans-
formations were saved in a database — an XML file created when the Why3 file was opened
in the GUI for the first time. Then, for all the goals that remain unchanged, the previous
proofs are shown again. For the parts that changed, the previous proofs attempts are
shown but marked with “(obsolete)” so that you know the results are not accurate. You
can now retry to prove all what remains unproved using any of the provers.
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=TT
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¥

£
file: hello_proof/../nello_proof.why

Figure 1.6: File reloaded after modifying goal G4

1.2.4 Replaying obsolete proofs

Instead of pushing a prover’s button to rerun its proofs, you can replay the existing but
obsolete proof attempts, by clicking on the Replay button. By default, Replay only replays
proofs that were successful before. If you want to replay all of them, you must select the
context all goals at the top of the left tool bar.

Notice that replaying can be done in batch mode, using the replay command (see
Section 6.5) For example, running the replayer on the hello_proof example is as follows
(assuming G still is (true -> false) /\ (true \/ false)).

$ why3 replay hello_proof
Info: found directory 'hello_proof' for the project
Opening session...[Xml warning] prolog ignored
[Reload] file '../hello_proof.why'
[Reload] theory 'HelloProof'
[Reload] transformation split_goal for goal G2
done
Progress: 9/9
2/3
+--file ../hello_proof.why: 2/3
+--theory HelloProof: 2/3
+--goal G2 not proved
Everything OK.

The last line tells us that no differences were detected between the current run and the
run stored in the XML file. The tree above reminds us that G5 is not proved.
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1.2.5 Cleaning

You may want to clean some the proof attempts, e.g. removing the unsuccessful ones
when a project is finally fully proved.

A proof or a transformation can be removed by selecting it and clicking on button
Remove. You must confirm the removal. Beware that there is no way to undo such a
removal.

The Clean button performs an automatic removal of all proofs attempts that are un-
successful, while there exists a successful proof attempt for the same goal.

1.3 Getting Started with the Why3 Command

The prove command makes it possible to check the validity of goals with external provers,
in batch mode. This section presents the basic use of this tool. Refer to Section 6.2 for a
more complete description of this tool and all its command-line options.

The very first time you want to use Why3, you should proceed with autodetection of
external provers. We have already seen how to do it in the Why3 GUIL. On the command
line, this is done as follows (here “>” is the prompt):

> why3 config --detect

This prints some information messages on what detections are attempted. To know which
provers have been successfully detected, you can do as follows.

> why3 --list-provers
Known provers:
alt-ergo (Alt-Ergo)
coq (Coq)
simplify (Simplify)

The first word of each line is a unique identifier for the associated prover. We thus have
now the three provers Alt-Ergo [1], Coq [2] and Simplify [5].

Let us assume that we want to run Simplify on the HelloProof example. The command
to type and its output are as follows, where the —P option is followed by the unique prover
identifier (as shown by --list-provers option).

> why3 prove -P simplify hello_proof.why
hello_proof.why HelloProof G1 : Valid (0.10s)
hello_proof.why HelloProof G2 : Unknown: Unknown (0.01s)
hello_proof.why HelloProof G3 : Unknown: Unknown (0.00s)

Unlike the Why3 GUI, the command-line tool does not save the proof attempts or applied
transformations in a database.

We can also specify which goal or goals to prove. This is done by giving first a theory
identifier, then goal identifier(s). Here is the way to call Alt-Ergo on goals Gy and G3.

> why3 prove -P alt-ergo hello_proof.why -T HelloProof -G G2 -G G3
hello_proof.why HelloProof G2 : Unknown: Unknown (0.01s)
hello_proof.why HelloProof G3 : Valid (0.01s)

Finally, a transformation to apply to goals before proving them can be specified. To
know the unique identifier associated to a transformation, do as follows.



18 CHAPTER 1. GETTING STARTED

> why3 --list-transforms
Known non-splitting transformations:

[...]

Known splitting transformations:

[...]
split_goal
split_intro

Here is how you can split the goal G5 before calling Simplify on the resulting subgoals.

> why3 prove -P simplify hello_proof.why -a split_goal -T HelloProof -G G2
hello_proof.why HelloProof G2 : Unknown: Unknown (0.00s)
hello_proof.why HelloProof G2 : Valid (0.00s)

Section 10.5 gives the description of the various transformations available.



Chapter 2

The Why3 Language

This chapter describes the input syntax, and informally gives its semantics, illustrated by
examples.

A Why3 text contains a list of theories. A theory is a list of declarations. Declarations
introduce new types, functions and predicates, state axioms, lemmas and goals. These
declarations can be directly written in the theory or taken from existing theories. The
base logic of Why3 is first-order logic with polymorphic types.

2.1 Example 1: Lists

Figure 2.1 contains an example of Why3 input text, containing three theories.

The first theory, List, declares a new algebraic type for polymorphic lists, 1ist ’a.
As in ML, ’a stands for a type variable. The type list ’a has two constructors, Nil
and Cons. Both constructors can be used as usual function symbols, respectively of type
list ’a and ’a X list ’a — list ’a. We deliberately make this theory that short,
for reasons which will be discussed later.

The next theory, Length, introduces the notion of list length. The use import List
command indicates that this new theory may refer to symbols from theory List. These
symbols are accessible in a qualified form, such as List.list or List.Cons. The import
qualifier additionally allows us to use them without qualification.

Similarly, the next command use import int.Int adds to our context the theory
int.Int from the standard library. The prefix int indicates the file in the standard
library containing theory Int. Theories referred to without prefix either appear earlier in
the current file, e.g. List, or are predefined.

The next declaration defines a recursive function, length, which computes the length
of a list. The function and predicate keywords are used to introduce function and pred-
icate symbols, respectively. Why3 checks every recursive, or mutually recursive, definition
for termination. Basically, we require a lexicographic and structural descent for every
recursive call for some reordering of arguments. Notice that matching must be exhaustive
and that every match expression must be terminated by the end keyword.

Despite using higher-order “curried” syntax, Why3 does not permit partial application:
function and predicate arities must be respected.

The last declaration in theory Length is a lemma stating that the length of a list is
non-negative.

The third theory, Sorted, demonstrates the definition of an inductive predicate. Every
such definition is a list of clauses: universally closed implications where the consequent is

19
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theory List
type list 'a = Nil | Cons 'a (list 'a)
end

theory Length
use import List
use import int.Int

function length (1 : list 'a) : int =
match 1 with

| Nil -> 0
| Cons _ r -> 1 + length r
end

lemma Length_nonnegative : forall 1l:list 'a. length 1 >= 0
end

theory Sorted
use import List
use import int.Int

inductive sorted (list int) =

| Sorted_Nil :
sorted Nil

| Sorted_One :
forall x:int. sorted (Cons x Nil)

| Sorted_Two :
forall x y : int, 1 : list int.
x <= y -> sorted (Cons y 1) -> sorted (Cons x (Cons y 1))

end

Figure 2.1: Example of Why3 text

an instance of the defined predicate. Moreover, the defined predicate may only occur in
positive positions in the antecedent. For example, a clause:

| Sorted_Bad :
forall x y : int, 1 : list int.
(sorted (Cons y 1) —> y > x) —> sorted (Cons x (Cons y 1))

would not be allowed. This positivity condition assures the logical soundness of an induc-
tive definition.

Note that the type signature of sorted predicate does not include the name of a
parameter (see 1 in the definition of length): it is unused and therefore optional.

2.2 Example 1 (continued): Lists and Abstract Orderings

In the previous section we have seen how a theory can reuse the declarations of another
theory, coming either from the same input text or from the library. Another way to
referring to a theory is by “cloning” A clone declaration constructs a local copy of the
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theory Order
type t
predicate (=) t t

axiom Le_refl : forall x : t. x <= X

axiom Le_asym : forall xy : t. x <=y >y <=x ->x =y

axiom Le_trans: forall x y z : t. x <=y >y <=2z -> x <=z
end

theory SortedGen
use import List
clone import Order as O

inductive sorted (1 : list t) =

| Sorted_Nil :
sorted Nil

| Sorted_One :
forall x:t. sorted (Cons x Nil)

| Sorted_Two :
forall xy : t, 1 : list t.
x <= y —> sorted (Cons y 1) -> sorted (Cons x (Cons y 1))

end

theory SortedIntlist

use import int.Int

clone SortedGen with type 0.t = int, predicate 0.(<=) = (=)
end

Figure 2.2: Example of Why3 text (continued)

cloned theory, possibly instantiating some of its abstract (i.e. declared but not defined)
symbols.

Consider the continued example in Figure 2.2. We write an abstract theory of partial
orders, declaring an abstract type t and an abstract binary predicate <=. Notice that an
infix operation must be enclosed in parentheses when used outside a term. We also specify
three axioms of a partial order.

There is little value in use’ing such a theory: this would constrain us to stay with the
type t. However, we can construct an instance of theory Order for any suitable type and
predicate. Moreover, we can build some further abstract theories using order, and then
instantiate those theories.

Consider theory SortedGen. In the beginning, we use the earlier theory List. Then
we make a simple clone theory Order. This is pretty much equivalent to copy-pasting
every declaration from Order to SortedGen; the only difference is that Why3 traces the
history of cloning and transformations and drivers often make use of it (see Section 10.4).

Notice an important difference between use and clone. If we use a theory, say List,
twice (directly or indirectly: e.g. by making use of both Length and Sorted), there is
no duplication: there is still only one type of lists and a unique pair of constructors. On
the contrary, when we clone a theory, we create a local copy of every cloned declaration,
and the newly created symbols, despite having the same names, are different from their
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originals.

Returning to the example, we finish theory SortedGen with a familiar definition of
predicate sorted; this time we use the abstract order on the values of type t.

Now, we can instantiate theory SortedGen to any ordered type, without having to
retype the definition of sorted. For example, theory SortedIntList makes clone of
SortedGen (i.e. copies its declarations) substituting type int for type 0.t of SortedGen
and the default order on integers for predicate 0. (<=). Why3 will control that the result
of cloning is well-typed.

Several remarks ought to be made here. First of all, why should we clone theory Order
in SortedGen if we make no instantiation? Couldn’t we write use import Order as O
instead? The answer is no, we could not. When cloning a theory, we only can instantiate
the symbols declared locally in this theory, not the symbols imported with use. Therefore,
we create a local copy of Order in SortedGen to be able to instantiate t and (<=) later.

Secondly, when we instantiate an abstract symbol, its declaration is not copied from
the theory being cloned. Thus, we will not create a second declaration of type int in
SortedIntList.

The mechanism of cloning bears some resemblance to modules and functors of ML-
like languages. Unlike those languages, Why3 makes no distinction between modules and
module signatures, modules and functors. Any Why3 theory can be use’d directly or
instantiated in any of its abstract symbols.

The command-line tool why3 (described in Section 1.3), allows us to see the effect of
cloning. If the input file containing our example is called 1ists.why, we can launch the
following command:

> why3 lists.why -T SortedIntList

to see the resulting theory SortedIntList:

theory SortedIntList
(* use BuiltIn *)
(* use Int *)
(* use List *)

axiom Le_refl : forall x:int. x <= X

axiom Le_asym : forall x:int, y:int. x <=y > y <=x ->x =y

axiom Le_tramns : forall x:int, y:int, z:int. x <=y > y <= z
-> x <=2z

(* clone Order with type t = int, predicate (<=) = (<=),
prop Le_transl = Le_trans, prop Le_asyml = Le_asym,
prop Le_refll = Le_refl *)

inductive sorted (list int) =
| Sorted_Nil : sorted (Nil:list int)
| Sorted One : forall x:int. sorted (Cons x (Nil:list int))
| Sorted_Two : forall x:int, y:int, l:1list int. x <=y ->
sorted (Cons y 1) -> sorted (Cons x (Cons y 1))

(* clone SortedGen with type t1 = int, predicate sortedl = sorted,
predicate (<=) = (<=), prop Sorted_Twol = Sorted_Two,
prop Sorted_Onel = Sorted_One, prop Sorted_Nill = Sorted_Nil,
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prop Le_trans2 = Le_trans, prop Le_asym2 = Le_asym,
prop Le_refl2 = Le_refl *)
end

In conclusion, let us briefly explain the concept of namespaces in Why3. Both use and
clone instructions can be used in three forms (the examples below are given for use, the
semantics for clone is the same):

e use List as L — every symbol s of theory List is accessible under the name L. s.
The as L part is optional, if it is omitted, the name of the symbol is List.s.

e use import List as L — every symbol s from List is accessible under the name
L.s. Itis also accessible simply as s, but only up to the end of the current namespace,
e.g. the current theory. If the current theory, that is the one making use, is later
used under the name T, the name of the symbol would be T.L.s. (This is why we
could refer directly to the symbols of Order in theory SortedGen, but had to qualify
them with 0. in SortedIntList.) As in the previous case, as L part is optional.

e use export List — every symbol s from List is accessible simply as s. If the
current theory is later used under the name T, the name of the symbol would be
T.s.

Why3 allows to open new namespaces explicitly in the text. In particular, the instruc-
tion “clone import Order as 07 can be equivalently written as:

namespace import O
clone export Order
end

However, since Why3 favors short theories over long and complex ones, this feature is
rarely used.

2.3 Example 2: Einstein’s Problem

We now consider another, slightly more complex example: how to use Why3 to solve a
little puzzle known as “Einstein’s logic problem”.! The code given below is available in
the source distribution in directory examples/logic/einstein.why.

The problem is stated as follows. Five persons, of five different nationalities, live in
five houses in a row, all painted with different colors. These five persons own different
pets, drink different beverages and smoke different brands of cigars. We are given the
following information:

e The Englishman lives in a red house;
e The Swede has dogs;

The Dane drinks tea;

The green house is on the left of the white one;

The green house’s owner drinks coffee;

e The person who smokes Pall Mall has birds;

!This Why3 example was contributed by Stéphane Lescuyer.
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e The yellow house’s owner smokes Dunhill;

e In the house in the center lives someone who drinks milk;

e The Norwegian lives in the first house;

¢ The man who smokes Blends lives next to the one who has cats;

e The man who owns a horse lives next to the one who smokes Dunhills;
e The man who smokes Blue Masters drinks beer;

e The German smokes Prince;

¢ The Norwegian lives next to the blue house;

¢ The man who smokes Blends has a neighbour who drinks water.

The question is: what is the nationality of the fish’s owner?

We start by introducing a general-purpose theory defining the notion of bijection, as
two abstract types together with two functions from one to the other and two axioms
stating that these functions are inverse of each other.

theory Bijection
type t
type u

function of t : u
function to_u : t

axiom To_of : forall x : t. to_ (of x)
axiom Of_to : forall y : u. of (to_ y)
end

nn
< M

We now start a new theory, Einstein, which will contain all the individuals of the
problem.

theory Einstein "Einstein’'s problem”

First we introduce enumeration types for houses, colors, persons, drinks, cigars and pets.

type house = H1 | H2 | H3 | H4 | H5
type color Blue | Green | Red | White | Yellow
type person = Dane | Englishman | German | Norwegian | Swede

type drink = Beer | Coffee | Milk | Tea | Water
type cigar = Blend | BlueMaster | Dunhill | PallMall | Prince
type pet = Birds | Cats | Dogs | Fish | Horse

We now express that each house is associated bijectively to a color, by cloning the
Bijection theory appropriately.

clone Bijection as Color with type t = house, type u = color

It introduces two functions, namely Color.of and Color.to_, from houses to colors and
colors to houses, respectively, and the two axioms relating them. Similarly, we express
that each house is associated bijectively to a person
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clone Bijection as Owner with type t = house, type u = person

and that drinks, cigars and pets are all associated bijectively to persons:

clone Bijection as Drink with type t = person, type u = drink
clone Bijection as Cigar with type t = person, type u = cigar
clone Bijection as Pet with type t = person, type u = pet

Next we need a way to state that a person lives next to another. We first define a predicate
leftof over two houses.

predicate leftof (hl h2 : house) =
match hl, h2 with

| H1, H2

| H2, H3

| H3, H4

| H4, H5 -> true
| _ -> false
end

Note how we advantageously used pattern matching, with an or-pattern for the four
positive cases and a universal pattern for the remaining 21 cases. It is then immediate to
define a neighbour predicate over two houses, which completes theory Einstein.

predicate rightof (hl h2 : house) =
leftof h2 hi
predicate neighbour (hl h2 : house) =
leftof hl h2 \/ rightof hl h2
end

The next theory contains the 15 hypotheses. It starts by importing theory Einstein.

theory EinsteinHints "Hints"
use import Einstein

Then each hypothesis is stated in terms of to_ and of functions. For instance, the
hypothesis “The Englishman lives in a red house” is declared as the following axiom.

axiom Hintl: Color.of (Owner.to_ Englishman) = Red

And so on for all other hypotheses, up to “The man who smokes Blends has a neighbour
who drinks water”, which completes this theory.

axiom Hint1b5:
neighbour (Owner.to_ (Cigar.to_ Blend)) (Owner.to_ (Drink.to_ Water))
end

Finally, we declare the goal in the fourth theory:

theory Problem "Goal of Einstein's problem"”
use import Einstein
use import EinsteinHints

goal G: Pet.to_ Fish = German
end
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and we are ready to use Why3 to discharge this goal with any prover of our choice.



Chapter 3

The WhyML Programming
Language

This chapter describes the WhyML programming language. A WhyML input text contains
a list of theories (see Chapter 2) and/or modules. Modules extend theories with programs.
Programs can use all types, symbols, and constructs from the logic. They also provide
extra features:

o In a record type declaration, some fields can be declared mutable and/or ghost.

o In an algebraic type declaration (this includes record types), an invariant can be
specified.

e There are programming constructs with no counterpart in the logic:

— mutable field assignment;

— sequence;

— loops;

— exceptions;

— local and anonymous functions;

— ghost parameters and ghost code;

— annotations: pre- and postconditions, assertions, loop invariants.

e A program function can be non-terminating or can be proved to be terminating
using a variant (a term together with a well-founded order relation).

e An abstract program type t can be introduced with a logical model 7: inside pro-
grams, t is abstract, and inside annotations, t is an alias for 7.

Programs are contained in files with suffix .mlw. They are handled by why3. For instance
> why3 prove myfile.mlw

will display the verification conditions extracted from modules in file myfile.mlw, as a
set of corresponding theories, and

> why3 prove -P alt-ergo myfile.mlw

27
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will run the SMT solver Alt-Ergo on these verification conditions. Program files are also
handled by the GUI tool why3ide. See Chapter 6 for more details regarding command
lines.

As an introduction to WhyML, we use the five problems from the VSTTE 2010 veri-
fication competition [10]. The source code for all these examples is contained in Why3’s
distribution, in sub-directory examples/.

3.1 Problem 1: Sum and Maximum

The first problem is stated as follows:

Given an N-element array of natural numbers, write a program to compute
the sum and the maximum of the elements in the array.

We assume N > 0 and a[i] > 0 for 0 < i < N, as precondition, and we have to prove the
following postcondition:
sum < N X mazx.

In a file max_sum.mlw, we start a new module:

module MaxAndSum

We are obviously needing arithmetic, so we import the corresponding theory, exactly as
we would do within a theory definition:

use import int.Int

We are also going to use references and arrays from WhyML’s standard library, so we
import the corresponding modules, with a similar declaration:

use import ref.Ref
use import array.Array

Modules Ref and Array respectively provide a type ref ’a for references and a type array
’a for arrays, together with useful operations and traditional syntax. They are loaded
from the WhyML files ref .mlw and array.mlw in the standard library. Why3 reports an
error when it finds a theory and a module with the same name in the standard library, or
when it finds a theory declared in a .mlw file and in a .why file with the same name.

We are now in position to define a program function max_sum. A function definition is
introduced with the keyword let. In our case, it introduces a function with two arguments,
an array a and its size n:

let max_sum (a: array int) (m: int) = ...

(There is a function length to get the size of an array but we add this extra parameter
n to stay close to the original problem statement.) The function body is a Hoare triple,
that is a precondition, a program expression, and a postcondition.

let max_sum (a: array int) (m: int)
requires { 0 <= n = length a }
requires { forall i:int. 0 <= i < n -> a[i] >= 0}
ensures { let (sum, max) = result in sum <= n * max }
= ... expression ...
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The first precondition expresses that n is non-negative and is equal to the length of a
(this will be needed for verification conditions related to array bound checking). The
second precondition expresses that all elements of a are non-negative. The postcondition
assumes that the value returned by the function, denoted result, is a pair of integers,
and decomposes it as the pair (sum, max) to express the required property. The same
postcondition can be written in another form, doing the pattern matching immediately:

returns { sum, max -> sum <= n * max J}

We are now left with the function body itself, that is a code computing the sum and
the maximum of all elements in a. With no surprise, it is as simple as introducing two
local references

ref 0 in
ref O in

let sum
let max

scanning the array with a for loop, updating max and sum

for i = 0 ton -1 do

if 'max < af[i] then max := a[il;
sum := !sum + al[i]
done;

and finally returning the pair of the values contained in sum and max:

('sum, !'max)

This completes the code for function max_sum. As such, it cannot be proved correct, since
the loop is still lacking a loop invariant. In this case, the loop invariant is as simple as
Isum <= i * !max, since the postcondition only requires to prove sum <= n * max. The
loop invariant is introduced with the keyword invariant, immediately after the keyword
do.

for i = 0 ton -1 do
invariant { !sum <= i * !max }

done

There is no need to introduce a variant, as the termination of a for loop is automatically
guaranteed. This completes module MaxAndSum. Figure 3.1 shows the whole code. We can
now proceed to its verification. Running why3, or better why3ide, on file max_sum.mlw
will show a single verification condition with name WP_parameter_max_sum. Discharging
this verification condition with an automated theorem prover will not succeed, most likely,
as it involves non-linear arithmetic. Repeated applications of goal splitting and calls to
SMT solvers (within why3ide) will typically leave a single, unsolved goal, which reduces
to proving the following sequent:

s <ix mazx, mar < ali] - s+ ali] < (i+1) x ali].
This is easily discharged using an interactive proof assistant such as Coq, and thus com-
pletes the verification.
3.2 Problem 2: Inverting an Injection

The second problem is stated as follows:
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module MaxAndSum

use import int.Int
use import ref.Ref
use import array.Array

let max_sum (a: array int) (n: int)
requires { 0 <= n = length a }
requires { forall i:int. O <= i < n -> a[i] >= 0 }
returns { sum, max -> sum <= n * max }
= let sum = ref O in
let max = ref O in
for i =0 ton -1 do
invariant { !sum <= i * !max }

if 'max < af[i] then max := a[il;
sum := !sum + al[i]
done;

(!'sum, !'max)

end

Figure 3.1: Solution for VSTTE’10 competition problem 1
Invert an injective array A on N elements in the subrange from 0 to N — 1,
i.e. the output array B must be such that B[A[i]] =i for 0 <i < N.

We may assume that A is surjective and we have to prove that the resulting array is also
injective. The code is immediate, since it is as simple as

for i = 0 ton - 1 do bla[i]l] <- i done

so it is more a matter of specification and of getting the proof done with as much au-
tomation as possible. In a new file, we start a new module and we import arithmetic and
arrays:

module InvertingAnInjection
use import int.Int

use import array.Array

It is convenient to introduce predicate definitions for the properties of being injective and
surjective. These are purely logical declarations:

predicate injective (a: array int) (n: int) =
forall i j: int. 0 <= i <mn ->0<=j <n->1i< j->ali]l < aljl

predicate surjective (a: array int) (n: int) =
forall i: int. 0 <= i < n -> exists j: int. (0 <= j < n /\ a[j] = 1)

It is also convenient to introduce the predicate “being in the subrange from 0 to n — 1”:

predicate range (a: array int) (n: int) =
forall i: int. 0 <= i < n -> 0 <= a[i]l < n
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Using these predicates, we can formulate the assumption that any injective array of size
n within the range 0..n — 1 is also surjective:

lemma injective_surjective:
forall a: array int, n: int.
injective a n -> range a n —-> surjective a n

We declare it as a lemma rather than as an axiom, since it is actually provable. It requires
induction and can be proved using the Coq proof assistant for instance. Finally we can
give the code a specification, with a loop invariant which simply expresses the values
assigned to array b so far:

let inverting (a: array int) (b: array int) (n: int)
requires { 0 <= n = length a = length b }
requires { injective a n /\ range a n }
ensures { injective b n }
=for i =0 ton-1do
invariant { forall j: int. 0 <= j < i -> bla[jl] =] }
blalil] <- 1
done

Here we chose to have array b as argument; returning a freshly allocated array would be
equally simple. The whole module is given in Figure 3.2. The verification conditions for
function inverting are easily discharged automatically, thanks to the lemma.

3.3 Problem 3: Searching a Linked List
The third problem is stated as follows:

Given a linked list representation of a list of integers, find the index of the first
element that is equal to 0.

More precisely, the specification says

You have to show that the program returns an index i equal to the length of
the list if there is no such element. Otherwise, the i-th element of the list must
be equal to 0, and all the preceding elements must be non-zero.

Since the list is not mutated, we can use the algebraic data type of polymorphic lists
from Why3’s standard library, defined in theory list.List. It comes with other handy
theories: list.Length, which provides a function length, and list.Nth, which provides
a function nth for the n-th element of a list. The latter returns an option type, depending
on whether the index is meaningful or not.

module SearchingAlinkedList
use import int.Int
use import option.Option
use export list.List
use export list.Length
use export list.Nth

It is helpful to introduce two predicates: a first one for a successful search,
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module InvertingAnInjection

use import int.Int
use import array.Array

predicate injective (a: array int) (n: int) =
forall i j: int. 0 <=1 <n ->0<=j <n ->1i<>j > ali]l <> aljl

predicate surjective (a: array int) (n: int) =
forall i: int. 0 <= i < n -> exists j: int. (0 <= j < n /\ a[j] = 1)

predicate range (a: array int) (n: int) =
forall i: int. 0 <= i < n -> 0 <= af[i] < n

lemma injective_surjective:
forall a: array int, n: int.
injective a n -> range a n -> surjective a n

let inverting (a: array int) (b: array int) (n: int)
requires { 0 <= n = length a = length b }
requires { injective a n /\ range a n }
ensures { injective b n }
=for i =0 ton -1 do
invariant { forall j: int. 0 <= j < i -> bla[jl] =] }
blalil] <- 1
done

end

Figure 3.2: Solution for VSTTE’10 competition problem 2

predicate zero_at (1: list int) (i: int) =
nth i 1 = Some O /\ forall j:int. 0 <= j < i -> nth j 1 <> Some O

and another for a non-successful search,

predicate no_zero (1: list int) =
forall j:int. 0 <= j < length 1 -> nth j 1 <> Some O

We are now in position to give the code for the search function. We write it as a recursive
function search that scans a list for the first zero value:

let rec search (i: int) (1: list int) =
match 1 with

| Nil -> i
| Cons x r => if x = 0 then i else search (i+1) r
end

Passing an index i as first argument allows to perform a tail call. A simpler code (yet
less efficient) would return O in the first branch and 1 + search ... in the second one,
avoiding the extra argument i.
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module SearchingAlinkedList

use import int.Int

use export list.List
use export list.Length
use export list.Nth

predicate zero_at (1: list int) (i: int) =
nth i 1 = Some O /\ forall j:int. 0 <= j < i -> nth j 1 <> Some O

predicate no_zero (1: list int) =
forall j:int. 0 <= j < length 1 -> nth j 1 <> Some 0

let rec search (i: int) (1: list int) variant { 1 }
ensures { (i <= result < i + length 1 /\ zero_at 1 (result - i))
\/ (result = i + length 1 /\ no_zero 1) }
= match 1 with

| Nil -> i
| Cons x r —=> if x = 0 then i else search (i+l1) r
end

let search_list (1: list int)
ensures { (0 <= result < length 1 /\ zero_at 1 result)
\/ (result = length 1 /\ no_zero 1) }
= search 0 1

end

Figure 3.3: Solution for VSTTE’10 competition problem 3

We first prove the termination of this recursive function. It amounts to give it a
variant, that is a value that strictly decreases at each recursive call with respect to some
well-founded ordering. Here it is as simple as the list 1 itself:

let rec search (i: int) (1: list int) variant { 1 } = ...

It is worth pointing out that variants are not limited to values of algebraic types. A
non-negative integer term (for example, length 1) can be used, or a term of any other
type equipped with a well-founded order relation. Several terms can be given, separated
with commas, for lexicographic ordering.

There is no precondition for function search. The postcondition expresses that either
a zero value is found, and consequently the value returned is bounded accordingly,

i <= result < i + length 1 /\ zero_at 1 (result - i)

or no zero value was found, and thus the returned value is exactly i plus the length of 1:

result = i + length 1 /\ no_zero 1

Solving the problem is simply a matter of calling search with 0 as first argument. The
code is given Figure 3.3. The verification conditions are all discharged automatically.
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Alternatively, we can implement the search with a while loop. To do this, we need
to import references from the standard library, together with theory list.HdT1 which
defines functions hd and t1 over lists.

use import ref.Ref
use import list.HdT1

Being partial functions, hd and t1 return options. For the purpose of our code, though, it
is simpler to have functions which do not return options, but have preconditions instead.
Such a function head is defined as follows:

let head (1: list 'a)
requires { 1 <> Nil } ensures { hd 1 = Some result }
= match 1 with Nil -> absurd | Cons h _ -> h end

The program construct absurd denotes an unreachable piece of code. It generates the
verification condition false, which is here provable using the precondition (the list cannot
be Nil). Function tail is defined similarly:

let tail (1 : list 'a)
requires { 1 <> Nil } ensures { tl 1 = Some result }
= match 1 with Nil -> absurd | Cons _ t -> t end

Using head and tail, it is straightforward to implement the search as a while loop. It
uses a local reference i to store the index and another local reference s to store the list
being scanned. As long as s is not empty and its head is not zero, it increments i and
advances in s using function tail.

let search_loop 1 =

ensures { ... same postcondition as in search_list ... }
= let i = ref O in
let s = ref 1 in
while !s <> Nil && head !s <> 0 do
invariant { ... }
variant { !s }
i:=11+1;
s := tail !s
done;
i

The postcondition is exactly the same as for function search_list. The termination of
the while loop is ensured using a variant, exactly as for a recursive function. Such a
variant must strictly decrease at each execution of the loop body. The reader is invited
to figure out the loop invariant.

3.4 Problem 4: N-Queens

The fourth problem is probably the most challenging one. We have to verify the imple-
mentation of a program which solves the N-queens puzzle: place N queens on an N x N
chess board so that no queen can capture another one with a legal move. The program
should return a placement if there is a solution and indicates that there is no solution
otherwise. A placement is a N-element array which assigns the queen on row ¢ to its
column. Thus we start our module by importing arithmetic and arrays:
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module NQueens
use import int.Int
use import array.Array

The code is a simple backtracking algorithm, which tries to put a queen on each row of the
chess board, one by one (there is basically no better way to solve the N-queens puzzle).
A building block is a function which checks whether the queen on a given row may attack
another queen on a previous row. To verify this function, we first define a more elementary
predicate, which expresses that queens on row pos and q do no attack each other:

predicate consistent_row (board: array int) (pos: int) (q: int) =
board[q] <> board[pos] /\
board[q] - board[pos] <> pos - q /\
board[pos] - board[q] <> pos - gq

Then it is possible to define the consistency of row pos with respect to all previous rows:

predicate is_consistent (board: array int) (pos: int) =
forall qg:int. O <= gq < pos -> consistent_row board pos q

Implementing a function which decides this predicate is another matter. In order for it to
be efficient, we want to return False as soon as a queen attacks the queen on row pos.
We use an exception for this purpose and it carries the row of the attacking queen:

exception Inconsistent int

The check is implemented by a function check_is_consistent, which takes the board
and the row pos as arguments, and scans rows from 0 to pos-1 looking for an attacking
queen. As soon as one is found, the exception is raised. It is caught immediately outside
the loop and False is returned. Whenever the end of the loop is reached, True is returned.

let check_is_consistent (board: array int) (pos: int)
requires { 0 <= pos < length board }
ensures { result=True <-> is_consistent board pos }
= try
for q = 0 to pos - 1 do
invariant {
forall j:int. 0 <= j < q -> consistent_row board pos j

}

let bq = boardl[q] in

let bpos = board[pos] in

if bq = bpos then raise (Inconsistent q);

if bg - bpos = pos - q then raise (Inconsistent q);
if bpos - bq = pos - q then raise (Inconsistent q)
done;
True
with Inconsistent q ->
assert { not (consistent_row board pos q) };
False
end

The assertion in the exception handler is a cut for SMT solvers. This first part of the
solution is given in Figure 3.4.
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module NQueens
use import int.Int
use import array.Array

predicate consistent_row (board: array int) (pos: int) (q: int) =
board[q] <> board[pos] /\
board[q] - board[pos] <> pos - q /\
board[pos] - board[q] <> pos - gq

predicate is_consistent (board: array int) (pos: int) =
forall g:int. O <= g < pos -> consistent_row board pos q

exception Inconsistent int

let check_is_consistent (board: array int) (pos: int)
requires { 0 <= pos < length board }
ensures { result=True <-> is_consistent board pos }
= try
for q = 0 to pos - 1 do
invariant {
forall j:int. 0 <= j < q -> consistent_row board pos j

}

let bq = boardl[q] in

let bpos = board[pos] in

if bq = bpos then raise (Inconsistent q);

if bq - bpos = pos - q then raise (Inconsistent q);
if bpos - bq = pos - q then raise (Inconsistent q)
done;
True

with Inconsistent q ->
assert { not (consistent_row board pos q) };
False

end

Figure 3.4: Solution for VSTTE’10 competition problem 4 (1/2)

We now proceed with the verification of the backtracking algorithm. The specification
requires us to define the notion of solution, which is straightforward using the predicate
is_consistent above. However, since the algorithm will try to complete a given partial
solution, it is more convenient to define the notion of partial solution, up to a given row.
It is even more convenient to split it in two predicates, one related to legal column values
and another to consistency of rows:

predicate is_board (board: array int) (pos: int) =
forall q:int. 0 <= q < pos -> 0 <= board[q] < length board

predicate solution (board: array int) (pos: int) =
is_board board pos /\
forall g:int. 0 <= q < pos -> is_consistent board q
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The algorithm will not mutate the partial solution it is given and, in case of a search
failure, will claim that there is no solution extending this prefix. For this reason, we
introduce a predicate comparing two chess boards for equality up to a given row:

predicate eq_board (bl b2: array int) (pos: int) =
forall g:int. 0 <= q < pos -> bi[q] = b2[q]

The search itself makes use of an exception to signal a successful search:

exception Solution

The backtracking code is a recursive function bt_queens which takes the chess board,
its size, and the starting row for the search. The termination is ensured by the obvious
variant n-pos.

let rec bt_queens (board: array int) (n: int) (pos: int)
variant { n-pos }

The precondition relates board, pos, and n and requires board to be a solution up to pos:

requires { O <= pos <= n = length board }
requires { solution board pos }

The postcondition is twofold: either the function exits normally and then there is no
solution extending the prefix in board, which has not been modified; or the function
raises Solution and we have a solution in board.

ensures { eq_board board (old board) pos }
ensures { forall b:array int. length b = n -> is_board b n ->
eq_board board b pos -> not (solution b n) }
raises { Solution -> solution board n }
= 'Init:

We place a code mark ’Init immediately at the beginning of the program body to be
able to refer to the value of board in